Fossil Energy Primer

A view of the Himalayas from Lhasa

Tad Patzek, Petroleum & Geosystems Engineering, UT Austin

10/7/2010, 10:00-12:00 am, SVC 203/202, Capitol Visitor Center, Washington D.C.

U.S. Energy Independence

- Fossil fuels run 85 percent of U.S. economy directly, and the remainder has a variable but non-negligible fossil fuel content
- Electricity is produced almost entirely from domestic energy sources
- Natural gas is the swing fuel for electricity generation
- Natural gas could aid in the electrification of railroads
- Natural gas could supplement petroleum as an automotive fuel

Summary of Conclusions...

- The global rate of production of oil is peaking now, coal will peak in 2-5 years, and natural gas in 20-50 years
- There is PLENTY of fossil fuels ("resources") left all over the Earth
- The resource size (current balance of a banking account) is mistakenly equated with the speed of drawing it down (ATM withdrawals)
- Few understand the ever more stringent daily withdrawal limits imposed by nature on our ATM cards (oil & gas wells and coal mines)
- Even fewer understand the high minimum balances (resource left behind) imposed on all oil, coal and gas recovery deposits

Summary of Conclusions...

- Economists, business people, and policy makers generally have poor understanding of banking
- They know what the rate of withdrawals (energy demand) should be, but have little idea about the withdrawal limits (energy supply)
- Offshore and unconventional fields will be producing an increasing portion of global oil supply
- Solar energy flow-based solutions (wind turbines, photovoltaics, and biofuels) will require most radical changes of our lifestyles
- Thermodynamically, industrial-scale biofuels are not sustainable, and will damage the Earth's most vital ecosystems

Oil Resides in Deep Subsurface

Zagros Mountains by J. T. Daniels (NASA), pore scale by Masa Prodanov

Accumulation vs. Production

Accumulation = Piggy Bank, Coin Slot = Oil Wells, Injection Wells, and Surface Facilities

Mean Ultimate Recoveries

Sources: Laherrere, 2002, other sources

Electricity generation

37% of U.S. primary energy use. Source: DOE EIA, accessed 03/28/2010

Electricity generation – Rest

Transportation Fuels

Predicting the Future...

Production histories of 65 oilfields in the North Sea. Sources: Norwegian Government (2009), Patzek & Croft (2010). The thick lines are Ekofisk and Ekofisk West

... Emergent Behavior...

A single Hubbert curve explains almost all of Norwegian production in the North Sea

A Future of Norwegian North Sea

Sources: Norwegian Government (2009), Patzek & Croft (2010)

North Sea: Ekofisk

OIP=6.4 billion bbl. Sources: Norwegian Government (2009), Patzek & Croft (2010)

Emergent Behavior in the Gulf...

Sources: U.S. DOE EIA, MMS, and Patzek's calculations

A Future of Deep Gulf

Sources: U.S. DOE EIA, MMS, and Patzek's calculations

Total Gulf Oil/U.S. Oil Elsewhere

2006 Oil Data for GOM

Source: MMS data, 2006

Fractals everywhere! All that is relevant was discovered?

Second and Third Hubbert Peak

Future Unconventional Natural Gas Cycle = 100 years of U.S. Supply

Unconventional Gas

Extra 1,200 Tcf = \$4.3 trillion at \$3.6 per mcf, mostly from unconventional gas

IEA Demand Growth Scenario...

OECD/EIA 2008 scenario of annual energy demand in the world

Source: www.iea.org/speech/2008/Tanaka/cop_weosideeven.pdf

IEA and an Oil Production Peak?!

There is an oil peak and 64 millions barrels of oil per day will be missing by 2030 Source: www.iea.org/speech/2008/Tanaka/cop_weosideeven.pdf

Oil Recovery Processes

World EOR Projects: 2.5 MBOPD

Adapted from the Oil & Gas Journal, Thomas, 2007

Power Density

Adapted from Laherrere, 2003, Patzek, 2007