

Natural Gas Vehicles, Fueling Infrastructure, and Economics

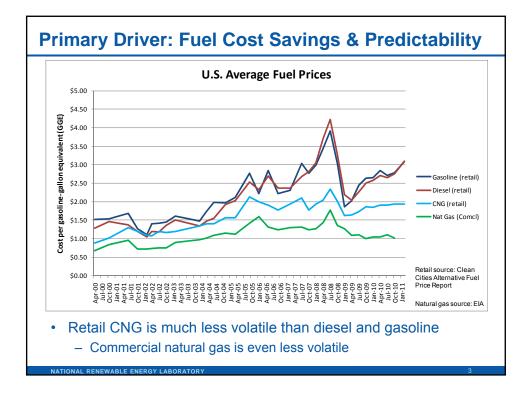
EESI Natural Gas Briefing

Caley Johnson

Transportation Market Analyst

March 16, 2011

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.


Why Use Natural Gas in Vehicles?

- Economics
 - Fuel prices
 - Vehicle attributes and industry
 - Infrastructure costs
 - Combined cash flow analysis
- Increased energy security
 - Natural gas is 98% from US and Canada
 - Compressed natural gas (CNG) reduces petroleum use by nearly 100% and liquefied natural gas (LNG) by 98% over its entire lifecycle*
- Reduced local air pollution
- Reduced greenhouse gas (GHG) emissions

*Source: Wang and Huang, 1999, www.ipd.anl.gov/anlpubs/2000/01/34988.pdf

NATIONAL RENEWABLE ENERGY LABORATORY

Natural Gas Vehicle (NGV) Industry

- Upfitters install the conversion kits
- Two conversion kit companies make bi-fueled kits (that can use gasoline)
- Each kit/engine combination requires Certificate of Conformity from the U.S. Environmental Protection Agency
- U.S Department of Energy and California agencies helping original equipment manufacturers (OEMs) develop new engines

Company	Vehicle Weight			
Original Equipment Manufacturers (OEM)				
Cummins Westport	Heavy			
Westport Innovations	Heavy (18 Wheeler)			
Honda	Light			
Conversion Kit Manufacturers				
Altech-Eco	Light & Medium			
BAF Technologies	Light & Medium			
Baytech Corporation	Light & Medium			
Emission Solutions Inc.	Light & Medium			
FuelTek Conversion	Light & Medium			
IMPCO Technologies	Light & Medium			
NaturalDrive	Light & Medium			
Prins	Light & Medium			
Upfitters				
More than 100	Light & Medium			

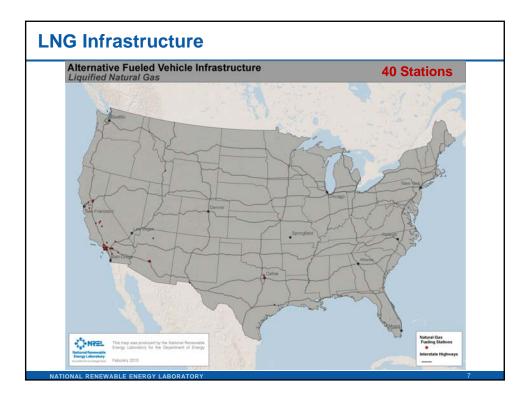
NATIONAL RENEWABLE ENERGY LABORATORY

2

Cost Drivers for Natural Gas Vehicles

Natural Gas Vehicle Attributes & Cost				
Size	Light	Medium	Heavy	Heavy
Range	≤250 miles	miles 250> 400		500+
Example	Commuting Sedan	Delivery Truck	Transit Bus	18-Wheeler
Tanks	Small CNG> Large CNG LNG			LNG
Manufacturer	OEM & Conversion	Conversion	OEM	OEM
Incremental or Conversion Cost*	\$7000			->\$50,000

*Bookmark cost estimates come from Honda's "Build and Price" website (March 2011) and the Business Case for Compressed Natural Gas in Municipal Fleets (Caley Johnson, 2010). Incremental cost is the difference between petroleum-fueled vehicle and natural gas vehicle.



NATIONAL RENEWABLE ENERGY LABORATORY

Alternative Fueled Vehicle Infrastructure
Compressed Natural Gas

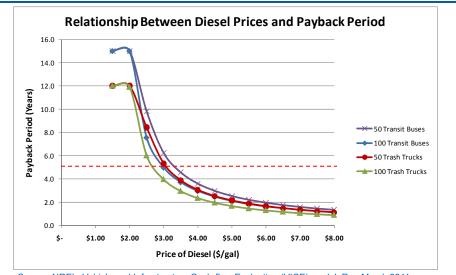
New York Compressed Compressed Infrastructure Compressed

Cost Drivers for Refueling Infrastructure

Infrastructure Cost Drivers			
Cost Driver	Range		
Number of Vehicles	1>250		
Fuel per Vehicle	Low Medium> High		
Required Refueling Speed	Slow> Fast		
Break between Vehicles	Long> Short		
Station Type	Slow-fill CNG Fast-fill CNG Liquefy		
Cost (CNG)*	\$7,000>\$4.5 million		
*Cost estimates are from a BRC Fuelmaker Phill representative and from the Business Case for CNG Vehicles in Municipal Fleets (Caley Johnson, 2010)			

- Compressors are generally the most costly part of a CNG station. More compressors are needed as the volume and speed of compression increases.
- Numerous companies will front the infrastructure cost in exchange for a CNG purchase contract.

NATIONAL RENEWABLE ENERGY LABORATORY


Best Vehicles for Natural Gas

- General rule: Payback is quicker for fleets that use more fuel, unless their infrastructure is a lot more expensive.
- The cost of infrastructure greater for fast refueling, much greater for LNG.

Vehicle's Suitability to use Natural Gas				
	Annual Fuel		Available	
Vehicle Type	Use (GGE)*	Required Range	Refueling Time	Equipment
Combo Truck	14,047	Long	Short	LNG
Transit Bus	11,906	Short	Short	Fast CNG
Refuse Truck	9,877	Short	Short	Fast CNG
Para. Shuttle	3,434	Short	Short	Fast CNG
Taxi	3,392	Short	Short**	Fast CNG
School Bus	1,896	Short	Long	Slow CNG
Delivery Truck	1,609	Short	Variable	Fast/Slow CNG
Police Cruiser	1,423	Long	Short	Fast CNG
Light-Duty				
Vehicle	558	Variable	Variable	Slow CNG

^{*}Source: Alternative Fuels and Advanced Vehicles Data Center, www.afdc.energy.gov/afdc/data/vehicles.html

Economics of an Entire CNG Project

Source: NREL, Vehicle and Infrastructure Cash-flow Evaluation (VICE) model. Ran March 2011. Reflects \$30,000 limit on infrastructure tax credit and expiration of vehicle tax incentive. See Business Case for CNG in Municipal Fleets (Caley Johnson, 2010) for details.

^{**}Sixty-six percent of taxis are owned and garaged by large companies and leased to multiple drivers . Source: Taxicab, Limousine, and Paratransit Association's 2009 Fact Book.

Red indicates higher cost. Green indicates lower cost.

Effect of Tax Credits

Payback Period (Years) with Removal of 2010 Tax Credits

Fleet (100 Vehicles)	All Credits*	No Fuel Credit	No Vehicle Credit	No Station Credit	No Credits
Transit Buses	3.6	5.9	5.5	3.6	9.1
Refuse Trucks	2.6	4.6	4.8	2.7	7.8

^{*}All credits as of June 2010

- Fuel (\$0.55/gal diesel equiv) and vehicle
 (≤\$32,000/vehicle) credits make a big difference
 - Fuel credit matters most for transit buses
 - Vehicle credit matters most for refuse trucks
- Station tax credit (formerly \$50,000) has less influence
- There are synergies between the three credits

Source: Caley Johnson 2010. Business Case for Compressed Natural Gas in Municipal Fleets, www.afdc.energy.gov/afdc/pdfs/47919.pdf

NATIONAL RENEWABLE ENERGY LABORATORY

11

Air Pollution Benefits of Natural Gas

Emissions Reductions in LDVs

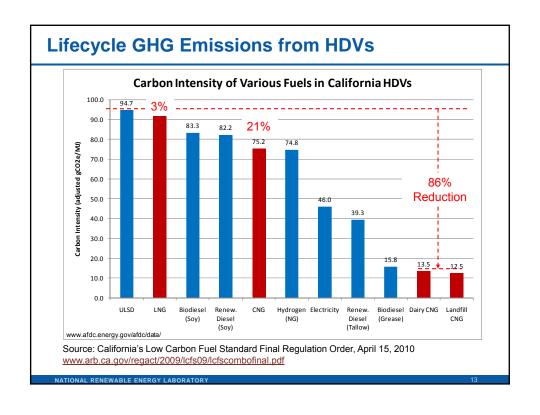
Pollutant	Percent Reduced	
Volatile Organic Compounds (VOC)	10%	
Carbon Monoxide (CO)	20% to 40%	
Oxides of Nitrogen (NO _x)	0%	
Particulate Matter (PM)	80%	
Methane	-400% (increase)	

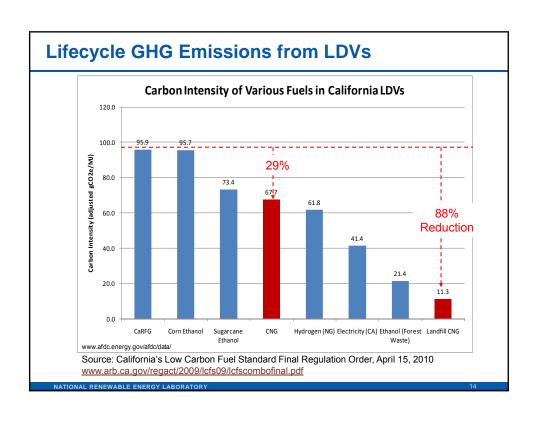
Source: Wang, 1999

Honda Civic GX has won ACEEE's green car award for the past 8 years

Emissions Reductions in HDVs

NREL/UWV fleet studies have shown reductions in criteria pollutants from a variety of fleets


(www.afdc.energy.gov/afdc/vehicles/emissions_natural_gas.html))


Cummins-Westport engine achieved the EPA's 2010 emission standards in 2007

More studies needed comparing CNG emissions to Diesel in a variety of fleets

NATIONAL RENEWABLE ENERGY LABORATOR

12

Renewable Natural Gas (RNG)

- Natural Gas (biomethane or biogas) is the natural byproduct of decomposing organic matter.
- Three most economical sources of RNG in US*
 - Landfill gas: ~500 capture and use (50% of suitable size)
 - Livestock operations: ~125 capture and use (2% of suitable size)
 - Wastewater treatment plants: ~105 capture and use (10%)
- Vast majority of RNG is used for electricity generation
- RNG sources are well dispersed throughout the nation
- · Infrastructure available for gas collection and cleanup
 - Must remove CO₂, N₂, H₂S, siloxanes, and other contaminants
- Vehicles need purer, more consistent methane than electricity generation
 - Logistics can favor use in vehicles over electricity generation

*Source: Mintz and Wegryzn, 2009, www1.eere.energy.gov/cleancities/pdfs/renewable_ng.pdf

NATIONAL RENEWABLE ENERGY LABORATORY

15

For More Information... | Informative Fuels & Advanced Vehicles Data Center | Informative Fuels & Advanced Vehicles Data Center | Informative & Advanced Fuels | Informative & I