

Global Warming Potential (GWP)

- Allows comparison of a greenhouse gas' ability to trap heat in the atmosphere relative to CO₂
- Depends on time horizon of interest
- Methane has a shorter lifetime than CO₂ but each molecule can absorb more heat
- Effect of methane on aerosols increases GWP

TIME	GWP
20 years	72
100 years	21-25

Natural Gas vs. Coal: Break-Even natural gas leak rate as low as 4-6%

20-YEAR GWP	100-YEAR GWP	Publication Date
5.3% (63)	~11.5% (21)	1990 ¹
13% (N/A)		1990 ²
6% (N/A)	1990 ³
4.9 – 6.3% (60)	10.5 –12.0% (22)	19934
4% (72)	13% (21)	1996 ⁵
5.6 – 0.7% (60)	11.3 – 0.7% (22)	2005 ⁶
4 – 6%	10 – 13%	Published Ranges

Sources:

1 C. Mitchell et al. (1990). Energy Policy, November 1990, 809-818

2 P.A. Okken (1990). Energy Policy, March 1990, 202-204

3 H. Rodhe (1990). Science, 248, 1217-1219 (EDF calculation using reported formula with limited consideration of upstream emissions)

4 J. Lelieveld, P.J. Crutzen, and C. Bruhl (1993). Chemosphere, 26, 739-768

5 Gas Research Institute and U.S. EPA (June 1996). Whethane Emissions from the Natural Gas Industry, Volume 2: Technical Report",
Appendix B (Value for GWP of 72 was calculated by EDF using a formula and values provided in report)

6 J. Lelieveld et al. (2005). Nature, 434, 841-842

Natural Gas vs. Gasoline: Break-Even natural gas leak rate as low as 1-2%

20-YEAR GWP	100-YEAR GWP	Publication Date
5.3% (63)	~11.5% (21)	1990 ¹
13%	(N/A)	1990 ²
6% ((N/A)	1990 ³
4.9 – 6.3% (60)	10.5 –12.0% (22)	19934
4% (72)	13% (21)	1996 ⁵
5.6 – 0.7% (60)	11.3 – 0.7% (22)	20056
4 6% 1-2%	10 \(13% 3-5%	Published Ranges

Sources:

10. Mitchell et al. (1990). Energy Policy, November 1990, 809-818

2 P.A. Okken (1990). Energy Policy, March 1990, 202-204

3 H. Rodne (1990). Science, 248, 1217-1219 (EDF calculation using reported formula with limited consideration of upstream emissions)

3 L. Elieveld, P.J. Crutzen, and C. Bruhl (1993). Chemosphere, 26, 739-768

Gas Research Institute and U.S. EPA (June 1996). "Methane Emissions from the Natural Gas Industry, Volume 2: Technical Report",
Appendix B, (Value for GWP of 72 was calculated by EDF using a formula and values provided in report)

6 J. Lelieveld et al. (2005). Nature, 434, 841-842

Estimates of Natural Gas supply chain leak rates

2.0 – 2.5% loss of NG upstream of any use for transportation – large uncertainty in accuracy and precision EPA

No empirical data on CNG/LNG leaks from vehicles

"For a 70-gallon LNG fuel tank with a heat leak rate of 12 W venting at 230 psig, the venting rate predicted by eqn. (2.15) is 3 x kg/s, which is the equivalent of **2.8 gallons per day** of LNG lost. This represents a **3% daily loss** by volume (for a full 70-gdlon tank), after the end of the non-venting hold time. For a 17-gdon tank with a 6.3 W heat leak rate, venting at 230 psig, a venting rate of 1.6 x 105 kg/s is predicted, which corresponds to a **6.5% daily loss** of LNG fuel."*

*Idaho National Engineering Laboratory (IN EEUEXT-98-00214,) 1998

There is a bit of a silver lining

4.2% of gas produced on onshore leases is vented or flared

"About **40%** of natural gas estimated to be vented and flared ... could be economically captured with currently available control technologies, although some barriers to their increased use exist."