

3

Committee Roster	
ared Cohon (Chair)	Carnegie Mellon University
laureen Cropper (Vice Chair)	University of Maryland, College Park
lark Cullen	Stanford University School of Medicine
Elisabeth Drake	Massachusetts Institute of Technology (retired)
Mary English	University of Tennessee, Knoxville
Christopher Field	Carnegie Institution of Washington
Daniel Greenbaum	Health Effects Institute
James Hammitt	Harvard University Center for Risk Analysis
Rogene Henderson	Lovelace Respiratory Research Institute
Catherine Kling	Iowa State University
Alan Krupnick	Resources for the Future
Russell Lee	Oak Ridge National Laboratory
H. Scott Matthews	Carnegie Mellon University
Thomas McKone	Lawrence Berkeley National Laboratory
Gilbert Metcalf	Tufts University
Richard Newell *	Duke University
Richard Revesz	New York University School of Law
lan Sue Wing	Boston University
Terrance Surles	University of Hawaii at Manoa

THE NATIONAL ACADEMIES Avituation of the second sec

Study Approach	
 Selected Areas Electricity Generation Transportation Heat for Buildings and Industrial Processes Climate Change Infrastructure and National Security 	
Considered full life-cycle	
Focused on air pollution effects for non-climate damages	
2005 and 2030 reference years	
 Did not present a point estimate of climate damages (per ton of CO2) Identified how damages vary with key parameters of Integrated Assessment models 	
THE NATIONAL ACADEMIES 4	

5

- Damage Function Approach: Emissions>>Ambient Concentration>>Exposure>>Effect>> Monetized Damages
- Effects of air pollution on human health, grain crop and timber yields, building materials, recreation, and visibility of outdoor vistas.
- Modeling used to estimate damages-- based primarily on SO₂, NO_x, and PM emissions across the 48 contiguous states.
- 94% of the damages are associated with human mortality
 Each statistical life lost valued at \$6 million (2000 USD)

THE NATIONAL ACADEMIES Advertised advertises for the second advertised advert

How Can Health Damage Estimates Inform Policy?

To control current PM, SO2, NOx damages:

- Damages represent benefits of pollution control
- Damages should be compared with costs of control
- Possible control measures are pollution taxes or allowances (control pollution not output)
- Tax on electricity provides no incentive to reduce SO2 per se
- Tax on gasoline reduces miles traveled but not pollution per mile

To select among future fuel sources for electricity:

• Compare cost per kWh of different fuel sources, including health costs and other externalities (e.g., damages from CO2)

THE NATIONAL ACADEMIES

How Can Health Damage Estimates Inform Policy?

To select among future transportation technologies:

- Compare cost per mile of different technologies
 - Add health costs and other externalities (e.g., damages from CO2) to capital and fuel costs

To calculate the net costs of CO2 reduction policies:

- Once have controlled local pollution (PM and ozone) remaining damages represent an additional benefit from CO2 reduction
- Example:
 - Energy-saving technology reduces electricity use by 1 MWh
 - If electricity produced by a coal plant, save 1 ton CO2
 - If the plant produces \$30 per MWh of health damages these represent a cobenefit

THE NATIONAL ACADEMIES Alterature feature, feature in a distance

