Local Energy

Sustainable Biomass Heat and Power Systems at the Community Scale

Presentation to:
ENVIRONMENTAL AND ENERGY STUDY INSTITUTE
Congressional Briefing

Christopher Recchia, Executive Director
Biomass Energy Resource Center
Montpelier, Vermont

Biomass Energy Resource Center (BERC)

BERC is a national not-for-profit organization working to promote responsible use of biomass for energy.
BERC’s mission is to achieve a healthier environment, strengthen local economies, and increase energy security across the United States by developing sustainable biomass systems at the community level.

Biomass Feedstocks

Forest Residues
• Timber harvesting
• Forest thinning
• Wood processing

Agricultural Residues
• Farms (corn stover)
• Agricultural processing (sugarcane bagasse)

Energy Crops
• Hybrid poplar
• Switch grass
• Willow

Other Biomass Feedstocks (urban waste, animal manure, waste vegetable oils, etc.)

Source: Roger Taylor, NREL Presentation at BIA Conference, 2005

Local Energy –
A new way to look at the relationship between communities and forests
What Are the Characteristics of Local Energy?

- Uses community-scale technology
- Replaces fossil fuels with local biomass, for heat and power
- Uses efficient, clean technology
- Has strict requirement for sustainable fuels

What Does Local Energy Look Like?

- Community district energy (using wood fuel)
- School and other institutional wood heating
- Wood-fired campus energy systems
- Small-scale power generation and CHP

What Are the Benefits of Local Energy?

- Keeps local energy dollars circulating in the community
- Displaces expensive fossil fuels and increases security
- Scaled to link community energy economy with local resources
- Acts as a force for sustainable forestry
- Uses manageable volumes of biomass for each project
- Supports forest-products industry and creates jobs

Why Woody Biomass is a Good Energy Choice for the Northeast
Heating with biomass is less expensive than heating with fossil fuels.

Biomass: A Cost-Effective Fuel

Wood fuel comparison:
Woodchips
- Direct sourced fuel
- Green, 25-50% moisture content
- Variable particle size
- Tricky to convey automatically
- Relatively low bulk density
- Inexpensive

Wood fuel comparison:
Wood Pellets
- Manufactured, value-added solid fuel
- Dry, 5-10% moisture content
- Uniform particle size (3 grades)
- Relatively easy to convey automatically
- Relatively high bulk density
- Inexpensive (but less than oil and propane)

Comparative Cost of Heat - Various Fuels

<table>
<thead>
<tr>
<th>Fuel</th>
<th>Unit</th>
<th>Cost/unit</th>
<th>Average Efficiency</th>
<th>$/MMBtu Delivered</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heating Oil</td>
<td>gallons</td>
<td>$2.40</td>
<td>80%</td>
<td>$21.74</td>
</tr>
<tr>
<td>Propane</td>
<td>gallons</td>
<td>$2.20</td>
<td>85%</td>
<td>$28.13</td>
</tr>
<tr>
<td>Cordwood</td>
<td>cords</td>
<td>$200</td>
<td>60%</td>
<td>$15.15</td>
</tr>
<tr>
<td>Woodchips</td>
<td>tons</td>
<td>$50</td>
<td>65%</td>
<td>$7.63</td>
</tr>
<tr>
<td>Wood Pellets</td>
<td>tons</td>
<td>$220</td>
<td>75%</td>
<td>$18.28</td>
</tr>
</tbody>
</table>

Assumes bulk delivery to institutional scale applications
Conversion efficiency determines how much energy can be produced from a given amount of wood harvested.

- High efficiency means getting the most out of the forest resource
- Low efficiency means wasting the forest resource

About how much wood might the potential Uses consume?

Industrial Uses:
- Bio-oil: 50-100,000 tons/plant
- Cellulosic ethanol (at scale): 50-100,000 tons/plant?
- Power plants: 200-600,000 tons/plant

Community Uses:
- One school: 200-1,000 tons
- 30 Schools: 15,000 tons
- All schools in Maine: 250,000 tons
- Middlebury College: 30,000 tons
- Vermont state office complex: 5,000 tons
- Crotched Mountain Rehab Ctr. (Hospital): 3,000 tons
- Public housing (50 units): 450 tons

Vermont Wood and Oil Energy Price History

Schools paid an average of:
- 2003-04: Wood $32/green ton, #2 Oil $1.01/gal
- 2004-05: Wood $36/green ton, #2 Oil $1.40/gal
- 2005-06: Wood $40/green ton, #2 Oil $1.56/gal
- 2006-07: Wood $43/green ton, #2 Oil $2.29/gal
What about wood pellets?

- One house (stove) 1-4 tons
- One house (central heat) 4-6 tons
- A small school 50-150 tons
- All schools in Maine 125,000 tons
- Small Commercial building
 - Heat: 100 tons
 - CHP: 300 tons
- Seniors housing (30 units) 150 tons

Bagged residential and bulk-delivered pellets

What Are “Modern” Biomass Heating Systems?

- Increased efficiency
- Lower emissions
- Lower time requirements
- Reliable operation
- Automated fuel handling
- Hot water boiler and heat distribution

 Universe of Technology Options for Biomass Heating Systems

<table>
<thead>
<tr>
<th>Biomass Feedstocks</th>
<th>Storage of Feedstock</th>
<th>Distribution of Heat</th>
<th>End Uses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Woodchips (hardwood/softwood/bole tree chips)</td>
<td>Below Grade Bin</td>
<td>Hot water</td>
<td>Hot water</td>
</tr>
<tr>
<td>Pellets (Wood, Grass, saw dust, agricultural residues)</td>
<td>Above Grade Bin</td>
<td>Steam</td>
<td>Steam</td>
</tr>
<tr>
<td>Cordwood</td>
<td>Silo (inside or under a roof of outside)</td>
<td>Hot air</td>
<td>Hot air</td>
</tr>
<tr>
<td>Agricultural Crop (corn)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Components of Biomass Systems

- Fuel Sources
- Fuel Transport and Delivery
- Fuel Storage
- Fuel Handling
- Combustion System
Wood-Chip Combustion

Best applications for woodchips
- Larger facilities
- Where fuel cost savings are very important
- Larger schools (over 40,000 sq. ft.)
- Where there's room for: new boiler room, fuel storage bin, tractor trailer access
- In/near forested areas with active forest products industry

Wood fuel comparison:

Pellet Boilers

Best applications for wood pellets
- Residential use (stoves & central heat)
- Small commercial facilities
- Small schools (under 40,000 sq. ft.)
- Locations with limited space
- Sites not far from a pellet plant

Wood fuel comparison:
Applications
Fuels for Schools

Darby, Montana
First School Wood System in the West - US Forest Service “Fuels for Schools”

School Case Study
Barre Town Elementary School
Barre, Vermont

- Size: 160,000 sq. ft. / 1000 students
- Heating System: Wood chips, converted from electric heat
- Fuel Use: 650 tons/year
- Annual Heating Cost: $19,000
- Annual Savings: $100,000 per year (1997)

Public Buildings
Emery Hubbard State Office Building
Newport, Vermont
State Capitol and Office Complex
Community Energy
Montpelier, Vermont

Multi-Building Heating
Mt. Wachusett
Community College

Campuses
University of Idaho, Moscow
Maryville College, Tennessee

District Heating - Campus
Middlebury College, Middlebury, Vermont
Case Study – Pellets
Commercial Heating

NRG Systems, Hinesburg, Vermont

Fuel Cost Savings

For heating, one ton of wood pellets equals...
- 120 gallons of heating oil
- 170 gallons of propane
- 16,000 kWh of natural gas
- 4,775 kilowatt hours (kWh) electricity

Current oil price: $2.30
Oil-pellet equivalent price: $1.67
Estimated Savings: $0.63
(per gallon oil offset with wood pellets)
Percent Savings: 27%
($2,700 saved on a $10,000 fuel bill)

Sustainable Fuel Supply

- Core to BERC’s Mission
- Manage Forest Resources for Multiple purposes
 – More than Net Growth - “Sustained Yield”
 – Habitat, Conservation and Wilderness
 – Recreation
 – Forest Resource Mgt and Products
- Carbon Neutrality or Storage
- Rural Economic Support
- BERC has developed NALG Model as Tools
 – Vermont Wood Fuel Supply Study
 – Adaptable to other states

Statewide Wood Fuel Supply Studies
Vermont -
Vermont Wood Fuel Supply Study

An Examination of the Availability and Reliability of Wood Fuel for Biomass Energy in Vermont

Above-ground biomass examined:
- Live trees 5” DBH and greater
- Above a one foot stump excluding foliage
- Includes "growing stock" trees, "cull" trees, and non-commercial species

Current Market Demand for Low Grade Wood from Vermont

- Biomass Power (BED and Ryegate) 750,000 tons
- Pulp and Paper (outside VT) 600,000 tons
- Firewood Heating 600,000 tons
- Woodchip Heating 35,000 tons
- Total 1,985,000 tons

Conclusion

Local Energy, making the energy connection between rural communities and their forest resources, brings together climate change, renewable energy, and sustainable forestry at the right scale.

Contact Information

Christopher Recchia
Executive Director
Biomass Energy Resource Center
43 State Street
Montpelier, VT 05601
802-223-7770 X 122
crecchia@biomasscenter.org

www.biomasscenter.org