Transportation: substantial emissions, smaller reductions

- Transportation sector is responsible for:
 - 31% of U.S. emissions of CO₂
 - ⅔ of that is from passenger vehicles (cars, light trucks)

- Pricing carbon would achieve relatively little in emissions reductions from transportation
 - Reductions in other sectors would be several times greater in proportion to total emissions in those sectors
Comparative effects of a price on carbon emissions: an illustrative example

- Pricing carbon is cost-minimizing, inducing reductions in emissions where they are easiest, cheapest
 - Small response in transport sector implies that it is relatively costly to reduce GHG emissions there

- Illustration: Suppose $17 \text{CO}_2\text{e} \text{ allowance price}$
 - Expected response to a 15¢/gallon carbon price
 (a 5% increase if gasoline price is $3 per gallon)
 added to transportation fuels:
 - By current estimates, that would induce
 - Short Run: ~0.25% decrease in gasoline consumption, emissions
 - Long Run: ~1.25% decrease in gasoline consumption, emissions

The transportation response to a carbon price: why its emissions reductions are relatively costly

- **Short Run: Adapt driving behaviors**
 - Drive less, Drive more slowly, Shift some driving off-peak
 - Observable (but small) response to 4gasoline prices
 Limiting factor: value of time

- **Long Run: Increase vehicle fuel economy**
 - If $17 \text{allowance price} \\text{maintained, small permanent increase in average fuel economy}$
 - 15+ years to achieve full response, as older vehicles retired
 - Consumers appear to value fuel economy less than other vehicle characteristics.
 - If so, a carbon price will be ineffectual here
Transportation adaptations are relatively costly (II)

– **Long Run: Reduce commute distance**
 - Relocate home or work location, as opportunity arises
 - *Existing land-use patterns will be long-lived*
 - These arose partly in response to past (low) gasoline prices

– **(Medium Run: Mode choice for freight hauling)**
 - Shift toward less carbon-intensive modes, e.g. RR
 - *Effect would likely be small unless carbon price substantial*
 - Limiting factors:
 - value of time (inventory costs)
 - quality of service (flexibility, reliability)

Although a carbon price would have a limited effect on transport emissions:

- Announced CAFE standards should reduce GHG emissions by about 25% per vehicle-mile, on average, by 2030
 - *(holding gasoline prices, incomes, congestion, fleet mix constant)*
 - But long-run trends suggest VMT could be \(\frac{2}{3}\) greater by then

- At current gasoline prices and planned CAFE standards, $17 carbon price would have no add’l effect on average fuel economy, but:
 - Would stimulate demand for fuel-efficient vehicles
 - *easing automakers’ vehicle-pricing constraints, costs of compliance*
 - Would encourage efficient decisions about driving
 - *A counterbalance to CAFE effect of encouraging driving*

- If gasoline prices were much higher, this carbon price:
 - Would begin to encourage greater fuel economy
 - *Europe in 2006: ~$6/gallon, ~38 MPG fleet average fuel economy*
See these CBO Publications for more on CAFE, Gasoline Taxes, Driving Responses

<table>
<thead>
<tr>
<th>• Issue Briefs:</th>
</tr>
</thead>
<tbody>
<tr>
<td>– Fuel Economy Standards Versus a Gasoline Tax (March 9, 2004)</td>
</tr>
<tr>
<td>– Climate Change Policy and CO2 Emissions from Passenger Vehicles (October 6, 2008)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>• Studies:</th>
</tr>
</thead>
<tbody>
<tr>
<td>– Effects of Gasoline Prices on Driving Behavior and Vehicle Markets (January, 2008)</td>
</tr>
</tbody>
</table>

| • www.cbo.gov |