How Can New Transatlantic Collaboration Overcome Barriers to Renewable Energy Goals?

EESI Briefing December 3, 2015

Speakers

Tom Peterson

• President and CEO, Center for Climate Strategies; Adjunct Professor Johns Hopkins University

Dr. Hal Nelson

• Research Associate Professor, Claremont Graduate University

Dr. Dale Medearis

 Senior Environmental Planner, Northern Virginia Regional Commission

Project, Report, Key Findings and Recommendations

INTRODUCTION

12/3/15

About CCS

Better Safer World

Catalyst, Capacity

Action Plans US -- States and Localities

Alaska, Arizona, Arkansas, Colorado, Connecticut*, Florida, Kentucky, Iowa, Maine*, Maryland, Michigan, Minnesota, Montana, Oregon, Pennsylvania, New Mexico, North Carolina, New York, South Carolina, Southern California, Vermont, Washington

Action Plans and Capacity Building Global – Nations, States, Provinces

China, DR Congo, Eastern Europe, European Union, Guatemala, Mexico, Philippines, Ukraine, others

About the Project

Funded by the EU Delegation to the US

Enhance national and subnational dialog on clean energy

Address issues of economic hardship

Focus on priorities for collaboration

Focus on renewable electricity market penetration

Cost, technology, investment barriers

Enhanced collaborative responses

About the Report

EU and US authors, reviewers, collaborators

Recommendations for enhanced transatlantic collaboration to expand penetration of renewable energy

Key Findings

EU-US Common ground

- New climate change and clean energy goals
- High levels of geographic variation
- Significant levels of economic hardship
- Renewable energy a strong track record and high potential for economic recovery and for diversifying energy sources
- Similar barriers and responses to renewable energy barriers

EU and US Policy responses to overcome RE barriers

- Strategies for the control of both "hard" and "soft" costs
- New approaches for clean energy investments
- Evolution of technology for on and off grid electric systems

EU-US Collaboration to overcome RE barriers

- Rapid access to best available information, real time technical assistance
- Virtual mechanisms to enable critical exchange, learning and assistance, and to ultimately expand access to renewable energy barrier reduction strategies and support
- Immediate opportunities exist, but governments are likely to be limited in their ability to upgrade collaboration at the speed and scale needed
- Transatlantic cooperation can be linked to support for other regions for greater benefits.

Key Recommendations

Enhance transatlantic cooperation mechanisms to meet new goals and methods	Focus on mutually supportive actions to remove cost, investment, and technology barriers	Develop virtual mechanisms for thought leadership, peer learning, and technical assistance		
Include counterparts at all level of governments and private sector	Open to regional collaboration in Asia, Africa, Central and South America, and other regions	Establish third party partnerships to catalyze cooperation and support		

Findings

EU-US COMMON GROUND

12/3/15

New Goals

Federal/Regional level

- EU 2030 Goals: 40% GHG reduction below 1990, 27% renewable energy increase
- US Presidential climate goals
- US Section 111d of the Clean Air Act (Clean Power Plan)
- UNFCCC Commitments by 2020

US State/EU Member States level

- California, New York, other states RPS targets
- EU Member States' target in the process of being assigned

US Clean Power Plan

EU Goals

Regional Price Variation

2013 U.S. Average Electricity Retail Prices (cents per kilowatt hour)

2013 U.S. Average Electricity Retail Prices (cents per kilowatt hour)

Alabama	9.02	Kentucky	7.54	North Dakota	8.19
Alaska	16.52	Louisiana	8.00	Ohio	9.16
Arizona	10.16	Maine	11.87	Oklahoma	7.81
Arkansas	7.82	Maryland	11.65	Oregon	8.39
California	14.57	Massachusetts	14.51	Pennsylvania	9.83
Colorado	9.80	Michigan	11.26	Rhode Island	13.91
Connecticut	15.68	Minnesota	9.52	South Carolina	9.14
Delaware	10.98	Mississippi	9,15	South Dakota	8.83
Dist. of Columbia	11.85	Missouri	8.96	Tennessee	9.22
Florida	10.30	Montana	8.58	Texas	8.77
Georgia	9.53	Nebraska	8.69	Utah	8.18
Hawaii	33.27	Nevada	9.04	Vermont	14.46
Idaho	7.61	New Hampshire	14.31	Virginia	9.01
Illinois	7.99	New Jersev	13.70	Washington	7.06
Indiana	8.63	New Mexico	9.24	West Virginia	7.91
lowa	8.12	New York	15.62	Wisconsin	10.64
Kansas	9.57	North Carolina	9.18	Wyoming	7.55

Economic Success Strategies

Center for Climate Strategies, 2012

Cost effective	Energy savings cut	Shifts to indigenous
approaches increase	energy costs,	vs. imported
economic efficiency	stimulate labor	resources cut job
and expansion	investment	outflows
Actions supported by local supply chains cut job outflows	New investment from outside sources stimulates labor investment at home	Labor intensive activities create more jobs, even if at higher cost (up to a point)

Renewable Energy Growth

Market Penetration Barriers

Cost Components

Levelized cost of energy in the US, 2014 (Lazards) Components of levelized cost of energy

	12/3/15 www	v.climatestrate	egies.us				MATE ST	RATEG
				Lev	elized Co	st(\$/MWh	ı)	
		\$0	\$50	\$100	\$150	\$200	\$250	\$300
	Diesel Generator		Average					
	Gas Peaking				<u>i</u>			
	IGCC							
	Nuclear							
	Coal							
Conventional	Gas Combined Cycle					-		
	Battery Storage				Avera	ge		
	Solar PV Rooftop Residential							
	Solar PV Rooftop C&I							
	Fuel Cell							
	Solar Thermal							
	Microturbine							- J -
	Geothermal				1	Fuel C	Cost Aver	ade
	Biomass Direct				1	Variab	le O&M /	vera
	Solar PV Utility					Fixed	O&M Ave	erade
itemative	Onshore wind					Capita	I Cost Av	erade

Cost Differentials

Appalachian Power, 10/27/15

12/3/15

Cost Comparisons

Levelized cost of Hard coal energy in the EU, Natural gas 2012 (Ecofys) Oil Nuclear **Biomass dedicated** Solar PV - rooftop (small scale) - 2012 Solar PV - ground (utility) - 2012 Solar PV - rooftop (small scale) - 2008 Solar PV - ground (utility) - 2008 Wind onshore Wind offshore Wind offshore - including transmission Hydropower - Dam Hydropower - Run-of-river Geothermal

Blue bars: Levelised costs at realised full load hours

IMATE STRATEGIES

12/3/15

EU vs. US Costs

Rocky Mountain Institute, 2013

Investment barriers

Cost and price gaps	 Historic gaps vs. fossil generation Renewable prices/costs falling 		
Economic hardship	 Impacts on priorities, pathways Limits on demand and capacity Adjustment and innovations 		
Expiration/Revision of cost mechanisms	 Policy shifts Economic shifts 		
Competition for investors	 Risk/return barriers Mechanism and policy gaps Lack of policy/investment linkages 		

CENTER FOR

STRATEGIES

Technology barriers

Grid integration

Transmission line expansion

Storage systems

Generation efficiency

Collaboration enhancements

RECOMMENDATIONS

12/3/15

Enhanced Collaboration

Existing	 National Periodic Closed Costly Slow
New	 Subnational/Private Live/Virtual Low Cost Open Fast

Virtual Mechanisms

Counterparts

Third Party Partnerships

12/3/15

Regional Collaboration

Report Completion, Endorsement, Transition

NEXT STEPS

12/3/15

Next Steps

Review and feedback on report findings, recommendations

Recommendations to policy makers, partners

Government and nongovernment responses

Thank you for your time and attention!

QUESTIONS?

Center for Climate Strategies 1800 K Street NW, Suite 714 Washington, DC 20006 <u>www.climatestrategies.us</u>

> Thomas D. Peterson tpeterson@climatestrategies.us

12/3/15