THE REALITY BEHIND THE RENEWABLE FUEL STANDARD: THE ECONOMY, AND THE ENVIRONMENT

September 20, 2017

Jessie Stolark
Policy Associate

EESI
Environmental and Energy Study Institute
• Founded in 1984 by a bipartisan Congressional caucus as an independent non-profit organization (but receives no Congressional funding)

• Source of non-partisan information on energy and environment policy development for Congress and other policymakers

• **Climate change** is one of the most serious problems facing civilization today — impacting infrastructure, water supply, agriculture, public health and natural ecosystems
Outline:

• Transportation sector must be greened

• Do we still need biofuels?

• What is an advanced biofuel?

• GHG profile of biofuels vs. oil

• Air quality impacts of ethanol
Transportation Emissions Eclipse Power Sector

U.S. carbon dioxide emissions by sector (2005-16)

Source: U.S. Energy Information Administration, Monthly Energy Review
U.S. GHG Emissions from Transportation

- Light vehicles: 59%
- Medium/heavy trucks: 22%
- Air: 8%
- Water: 4%
- Rail: 2%
- Other: 4%
- Buses: 1%
Electric Vehicles – Not a Fad

- Volvo: all electric or hybrid cars by 2019
- VW: electric versions of all 300 models by 2030
- Mercedes-Benz: all electric by 2022
- UK, Netherlands, France: bans fossil-fuel burning cars by 2040
- China: plans to ban sale of gas/diesel vehicles

“Only a matter of time before the transition to electric vehicles takes off” – JP Morgan Chase
If EVs are the Future ...

What Do We Do in the Meantime?
We Will Use Liquid Fuels for Decades
Biofuels Need to be Done Sustainably

Renewable Fuel Standard: EPA Fuel Categories

<table>
<thead>
<tr>
<th>Fuel</th>
<th>GHG threshold reduction (%)</th>
<th>RFS 2022 Volumes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional biofuel</td>
<td>20</td>
<td>15 bgal</td>
</tr>
<tr>
<td>Advanced biofuels</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Biomass based-diesel</td>
<td>50</td>
<td>21 bgal</td>
</tr>
<tr>
<td>Cellulosic biofuel</td>
<td>60</td>
<td></td>
</tr>
</tbody>
</table>
Well to Wheels GHG Accounting

- **Direct inputs:**
 - Fertilizer
 - Energy

- **Outputs:**
 - Main: fuel
 - Co-products: electricity, high protein animal feed, oils.

- **Indirect inputs:**
 - Land use change
Well to Wheels GHG Accounting for Fuel Feedstocks – g CO2/mj

Percent Reduction Relative to Gasoline

90 - 103% 77 - 97% 101 - 115%

GHG Well to Wheels: Mandated vs. Actual

<table>
<thead>
<tr>
<th>Fuel</th>
<th>Feedstock</th>
<th>RFS GHG Reduction Mandate (%)</th>
<th>CARB/EP A Pathway actual (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cellulosic Ethanol</td>
<td>Corn stover</td>
<td>20</td>
<td>93%</td>
</tr>
<tr>
<td>Biodiesel</td>
<td>Waste fats & oils</td>
<td>50</td>
<td>78%</td>
</tr>
<tr>
<td>Biogas</td>
<td>Landfill gas</td>
<td>60</td>
<td>77%</td>
</tr>
</tbody>
</table>
Increasing Efficiency, Co-Products

<table>
<thead>
<tr>
<th></th>
<th>2001</th>
<th>2008</th>
<th>2012</th>
<th>Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yield (undenatured, gallon/bushel)</td>
<td>2.64</td>
<td>2.78</td>
<td>2.82</td>
<td></td>
</tr>
<tr>
<td>Thermal Energy (Btu/gallon, LHV)</td>
<td>36,000</td>
<td>26,206</td>
<td>23,862</td>
<td></td>
</tr>
<tr>
<td>Electricity Use (kWh/gallon)</td>
<td>1.09</td>
<td>0.73</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>DDG Yield (dry) incl. corn oil (lbs/bu)</td>
<td></td>
<td>15.81</td>
<td>15.73</td>
<td></td>
</tr>
<tr>
<td>Corn Oil Separated (lbs/bushel)</td>
<td>0</td>
<td>0.11</td>
<td>0.53</td>
<td></td>
</tr>
<tr>
<td>Corn Oil Separated (% of Plants)</td>
<td>0%</td>
<td>33%</td>
<td>74%</td>
<td></td>
</tr>
<tr>
<td>Water Use (gallon/gallon)</td>
<td>5</td>
<td>2.72</td>
<td>2.7</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Efficiency Gains in Corn to Ethanol Processing

Steffen Muller, PhD, Lifecycle Analysis of Ethanol and Gasoline Under the Renewable Fuel Standard, UIC Engineering
Advanced Biofuels: Ethanol, Biodiesel, Jet & Marine

“Wastes”:
- Crop Residue
- Organic wastes
- Forestry waste

Purpose grown:
- Perennial grasses
- Fast growing woody crops
- Grasses
- Legumes
- Algae, cyanobacteria
Conventional crude:
- Easy to extract & refine
- Naturally occurring in liquid form

Unconventional crude:
- Energy intensive to extract & refine
- Examples: fracking, tar sands, offshore drilling
- Canadian tar sands: 18 – 21% higher emissions than conventional crude oil.

Understanding Unconventional Oil, Carnegie Endowment for Peace, 2012

Air Quality & E15

45 million Americans live, go to school or work within 300 feet of a major roadway, airport or railway. -- U.S. EPA

• Modest increases (E10 – E15) in ethanol content:
 – Reduces ozone precursors
 – Reduces GHGs
 – Reduces Volatile Organic Compounds (VOCs)
Ethanol is Clean Octane

- Gasoline contains ~25% by volume gasoline aromatics (as octane boosters)
- Ethanol is the cleanest, cheapest source of octane
- Auto manufacturers want additional octane
Increasing ethanol content decreases toxics in gasoline, such as benzene
Takeaways:

• Biofuels are STILL a necessary piece in greening the transportation sector and will continue to be

• Greenhouse gas footprint of ethanol continues to shrink while gasoline continues to rise

• Use of ethanol represents immediate reduction in tailpipe emissions, GHGs

• Renewable fuels are more than just corn ethanol – but market certainty is needed to build cellulosic space
Acknowledgements:

• Argonne National Laboratory

• Oak Ridge National Laboratory

• National Renewable Energy Laboratory

• US DOE Bioenergy Technologies Office

• Dr. Steffen Muller, University of Illinois at Chicago
Thank You

Jessie Stolark
Policy Associate, Sustainable Biomass
jstolark@eesi.org
202-662-1885