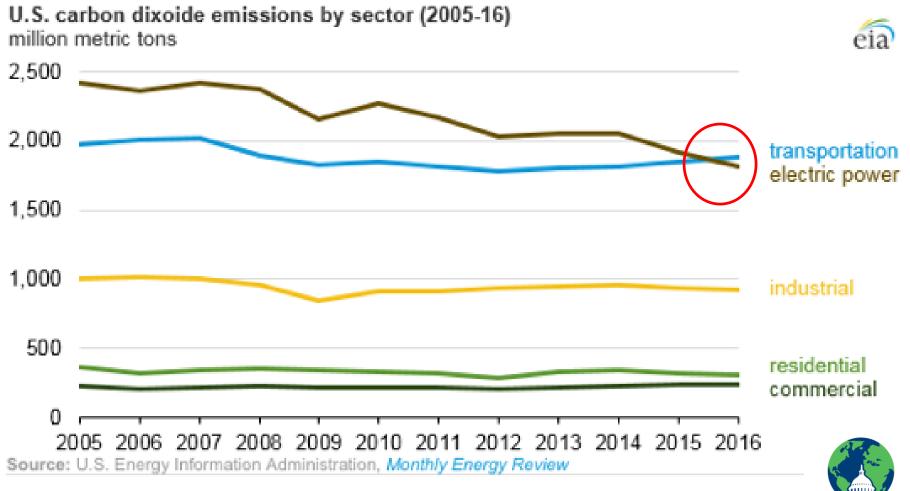
THE REALITY BEHIND THE RENEWABLE FUEL STANDARD: THE ECONOMY, AND THE ENVIRONMENT

September 20, 2017

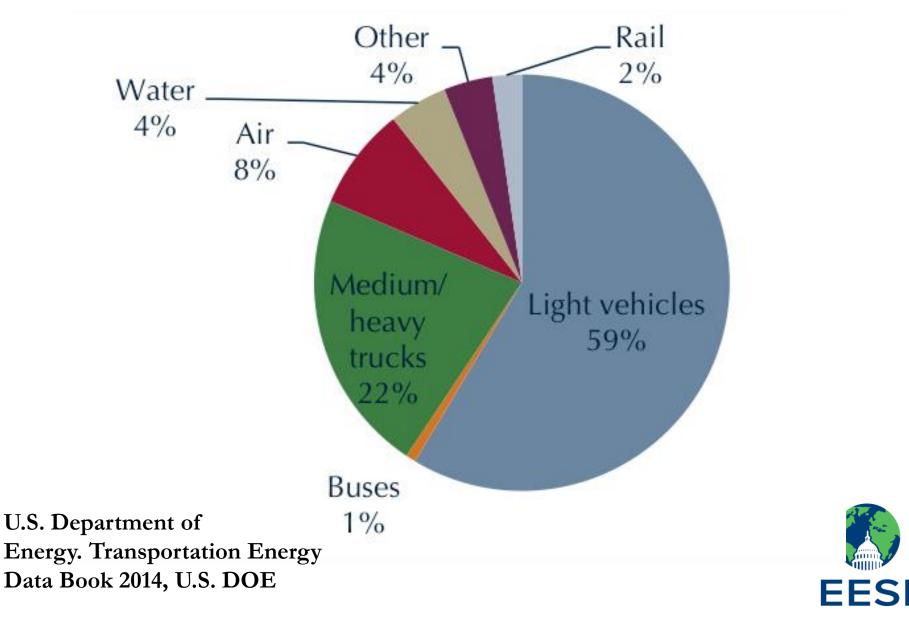
Jessie Stolark

Policy Associate


- Founded in 1984 by a bipartisan Congressional caucus as an independent non-profit organization (but receives no Congressional funding)
- Source of non-partisan information on energy and environment policy development for Congress and other policymakers
- <u>Climate change</u> is one of the most serious problems facing civilization today — impacting infrastructure, water supply, agriculture, public health and natural ecosystems

Outline:

- Transportation sector must be greened
- Do we still need biofuels?
- What is an advanced biofuel?
- GHG profile of biofuels vs. oil
- Air quality impacts of ethanol



Transportation Emissions Eclipse Power Sector

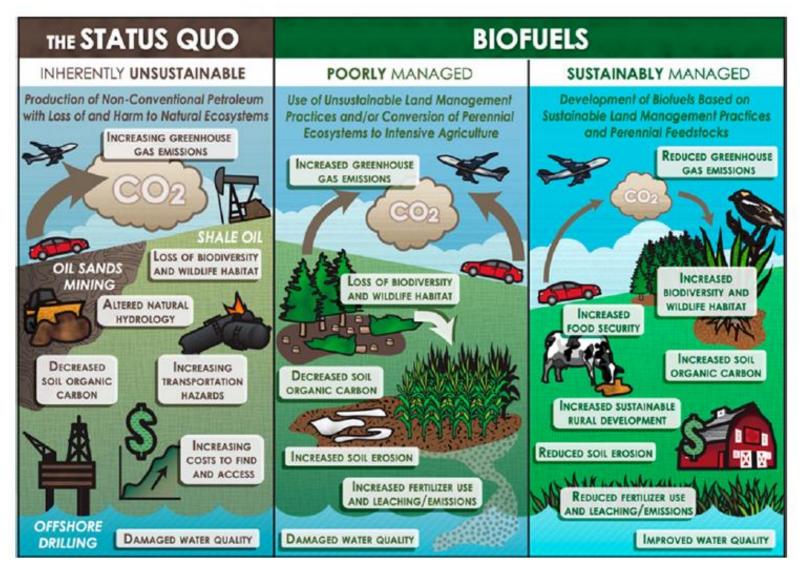
FES

U.S. GHG Emissions from Transportation

Electric Vehicles – Not a Fad

- Volvo: all electric or hybrid cars by 2019
- VW: electric versions of all 300 models by 2030
- Mercedes-Benz: all electric by 2022
- UK, Netherlands, France: bans fossil-fuel burning cars by 2040
- China: plans to ban sale of gas/diesel vehicles
- "Only a matter of time before the transition to electric vehicles takes off" – JP Morgan Chase

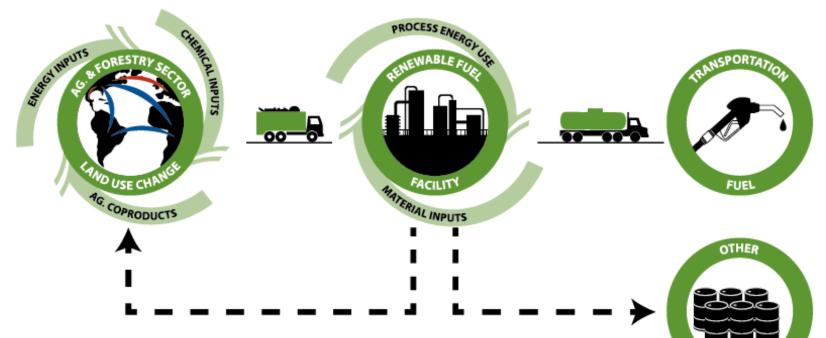
If EVs are the Future ...


What Do We Do in the Meantime?

We Will Use Liquid Fuels for Decades

Biofuels Need to be Done Sustainably

B. Dale et al., Take a Closer Look: Biofuels Can Support Environmental, Economic & Social Goals, Enviro. Sci & Tech., 2014.

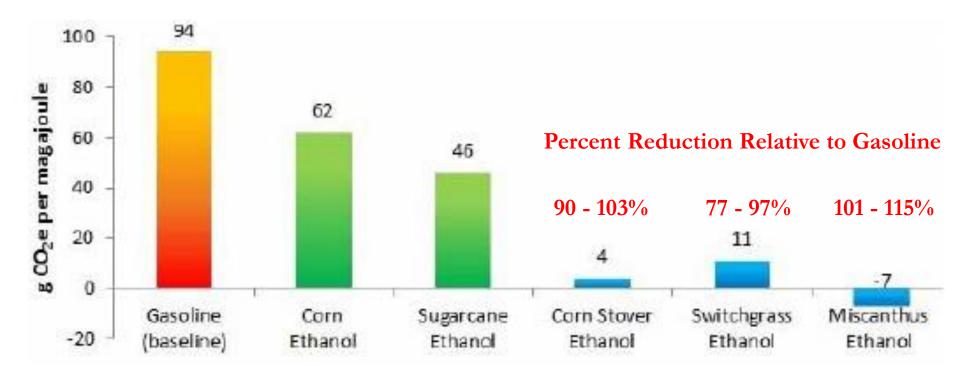


Renewable Fuel Standard: EPA Fuel Categories

Fuel	GHG threshold reduction (%)	RFS 2022 Volumes
Conventional biofuel	20	15 bgal
Advanced biofuels	50	
Biomass based-diesel	50	21 bgal
Cellulosic biofuel	60	

Well to Wheels GHG Accounting

Indirect inputs:


Land use change

- Direct inputs:
 - Fertilizer
 - Energy
- Outputs:
 - Main: fuel
 - Co-products: electricity, high protein animal feed, oils.

DPRODU

Well to Wheels GHG Accounting for Fuel Feedstocks – g CO2/mj

M. Wang et. al., "Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Ethanol from Corn, Sugarcane, and Cellulosic Biomass for US Use." Enviro. Research Letters, 2012.

GHG Well to Wheels: Mandated vs. Actual

Fuel	Feedstock	RFS GHG Reduction Mandate (%)	CARB/EP A Pathway actual (%)
Cellulosic Ethanol	Corn	20	93%
	stover		
Biodiesel	Waste fats	50	78%
	& oils		
Biogas	Landfill	60	77%
	gas		

U.S. EPA, Approved Pathways, California Air Resources Board

Increasing Efficiency, Co-Products

	2001	2008	2012	Trend
Yield (undenatured, gallon/bushel)	2.64	2.78	2.82	\setminus
Thermal Energy (Btu/gallon, LHV)	36,000	26,206	23 <i>,</i> 862	/
Electricity Use (kWh/gallon)	1.09	0.73	0.75	/
DDG Yield (dry) incl. corn oil (lbs/bu)		15.81	15.73	
Corn Oil Separated (Ibs/bushel)	0	0.11	0.53	
Corn Oil Separated (% of Plants)	0%	33%	74%	
Water Use (gallon/gallon)	5	2.72	2.7	_

Table 2: Efficiency Gains in Corn to Ethanol Processing

Steffen Muller, PhD, Lifecycle Analysis of Ethanol and Gasoline Under the Renewable Fuel Standard, UIC Engineering

Advanced Biofuels: Ethanol, Biodiesel, Jet & Marine

Wikipedia via a Creative Commons license

Idaho National Lab via a Creative Commons license

Texas A&M via a Creative Commons license

"Wastes":

- Crop Residue
- Organic wastes
- Forestry waste

Purpose grown:

- Perennial grasses
- Fast growing woody crops
- Grasses
- Legumes
- Algae, cyanobacteria

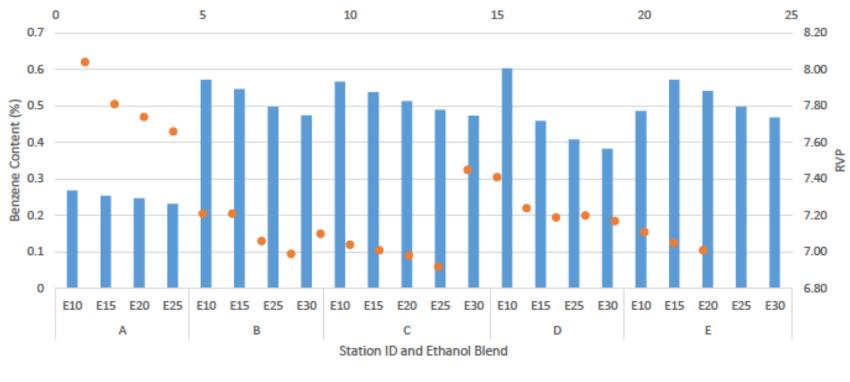
GHG Well to Wheels: Oil

- Conventional crude:
 - Easy to extract & refine
 - Naturally occurring in liquid form
- Unconventional crude:
 - Energy intensive to extract & refine
 - Examples: fracking, tar sands, offshore drilling
 - Canadian tar sands: 18 21% higher emissions than conventional crude oil.
- Understanding Unconventional Oil, Carnegie Endowment for Peace, 2012
- C. Hai et. al, Well-to-Wheels Greenhouse Gas Emissions of Canadian Oil Sands Products: Implications for U.S. Petroleum Fuels, Enviro Sci. & Tech., 2015

Air Quality & E15

45 million Americans live, go to school or work within 300 feet of a major roadway, airport or railway. -- U.S. EPA

- Modest increases (E10 E15) in ethanol content:
 - Reduces ozone precursors
 - Reduces GHGs
 - Reduces Volatile Organic Compounds (VOCs)


Ethanol is Clean Octane

- Gasoline contains ~25% by volume gasoline aromatics (as octane boosters)
- Ethanol is the cleanest, cheapest source of octane
- Auto manufacturers want additional octane

Cook County Fuel Samples (splash blended from E10)

Increasing ethanol content decreases toxics in gasoline, such as benzene

Steffen Muller, PhD, PM and Benzene in Splash Blended Fuels with Ethanol, UIC Engineering

Takeaways:

- Biofuels are STILL a necessary piece in greening the transportation sector and will continue to be
- Greenhouse gas footprint of ethanol continues to shrink while gasoline continues to rise
- Use of ethanol represents immediate reduction in tailpipe emissions, GHGs
- Renewable fuels are more than just corn ethanol but market certainty is needed to build cellulosic space

Acknowledgements:

- Argonne National Laboratory
- Oak Ridge National Laboratory
- National Renewable Energy Laboratory
- US DOE Bioenergy Technologies Office
- Dr. Steffen Muller, University of Illinois at Chicago

THANK YOU

Jessie Stolark

Policy Associate, Sustainable Biomass

jstolark@eesi.org 202-662-1885

