Advanced Biofuels: Why do we want them?

July 15, 2015

Jessie Stolark

Policy Associate

- Founded in 1984 by a bipartisan Congressional caucus as an independent non-profit organization (but receives no Congressional funding)
- Source of non-partisan information on energy and environment policy development for Congress and other policymakers
- <u>Climate change</u> is one of the most serious problems facing civilization today — impacting infrastructure, water supply, agriculture, public health and natural ecosystems

Outline:

- Do we still need biofuels?
- What is an advanced biofuel?
- GHG profile of biofuels vs. oil
- Other benefits of biofuels

GHG Emissions from Transportation

Total U.S. Greenhouse Gas Emissions by Economic Sector in 2013, U.S. EPA U.S. Department of Energy. Transportation Energy Data Book 2014, U.S. DOE

Biofuels Need to be Done Sustainably

B. Dale et al., Take a Closer Look: Biofuels Can Support Environmental, Economic & Social Goals, Enviro. Sci & Tech., 2014.

Renewable Fuel Standard: EPA Fuel Categories

Fuel	GHG threshold	RFS 2022
	reduction (%)	Volumes
Conventional biofuel	20	15 bgal
Advanced biofuels	50	
Biomass based-diesel	50	21 bgal
Cellulosic biofuel	60	

Advanced Biofuels: Ethanol, Biodiesel, Jet & Marine

Wikipedia via a Creative Commons license

Idaho National Lab via a Creative Commons license

Texas A&M via a Creative Commons license

"Wastes":

- Crop Residue
- Organic wastes
- Forestry waste

Purpose grown:

- Perennial grasses
- Fast growing woody crops
- Grasses
- Legumes
- Algae, cyanobacteria

Well to Wheels GHG Accounting

Indirect inputs:

Land use change

- Direct inputs:
 - Fertilizer
 - Energy
- Outputs:
 - Main: fuel
 - Co-products: electricity, high protein animal feed, oils.

DPRODU

Well to Wheels GHG Accounting for Fuel Feedstocks – g CO2/mj

M. Wang et. al., "Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Ethanol from Corn, Sugarcane, and Cellulosic Biomass for US Use." Enviro. Research Letters, 2012.

GHG Well to Wheels: Mandated vs. Actual

Company/Fuel	Feedstock	RFS GHG Reduction	EPA Pathway
		Mandate (%)	actual (%)
Poet Laddonia:	Corn	20	28.2%
Ethanol	starch		
High Plains	Waste fats	50	78%
Bioenergy:	& oils		
Biodiesel			
ENVIA:	Landfill	60	77%
Biogas	gas		
Algenol: Ethanol	Algae	60	69%

U.S. EPA, Approved Pathways

GHG Well to Wheels: BioJet Fuel

BioJet feedstock	GHG reduction potential relative to jet fuel (%)
Cellulosic (algae, crop wastes etc.)	41 – 63%
Oil seed crops	68 -76%
corn stover (100%)	89%

J. Han et. al., "Life-cycle analysis of bio-based aviation fuels." Bioresource Tech., 2013.

GHG Well to Wheels: Oil

- Conventional crude:
 - Easy to extract & refine
 - Naturally occurring in liquid form
- Unconventional crude:
 - Energy intensive to extract & refine
 - Examples: fracking, tar sands, offshore drilling
 - Canadian tar sands: 18 21% higher emissions than conventional crude oil.
- Understanding Unconventional Oil, Carnegie Endowment for Peace, 2012

Fuel Choice Effects Beyond GHGs

45 million Americans live, go to school or work within 300 feet of a major roadway, airport or railway. -- U.S. EPA

- Gasoline contains ~25% by volume gasoline aromatics
- Gasoline aromatics → benzene, toluene, ethylbenzene & xylene
- Increasing the volume of ethanol in gasoline lowers toxic gasoline additives

Takeaways:

- Biofuels are a necessary piece in de-carbonizing the transportation sector
- Sustainability is KEY and goes beyond GHGs
- Progress on sustainability is being made, and needs to continue
- Renewable fuels are more than just corn ethanol

Acknowledgements:

- Argonne National Laboratory
- Oak Ridge National Laboratory
- National Renewable Energy Laboratory
- US DOE Bioenergy Technologies Office
- Dr. Bruce Dale, Michigan State University
- Steve VanderGriend, Urban Air Initiative

THANK YOU

Jessie Stolark

Policy Associate, Sustainable Biomass

jstolark@eesi.org 202-662-1885

