US Corn Ethanol: Emerging Technologies at the Biorefinery and Field Level

Briefing

Steffen Mueller, PhD
Principal Economist
University of Illinois at Chicago
Energy Resources Center

Washington, DC
September 18, 2014
• The Production Technologies of First and Second Generation Biofuels are Rapidly Advancing
 – At the Plant Level
 – During Feedstock Production

• Main Drivers Are:
 – RFS2, Innovation Cycles, Access to Capital

• Technologies also Ensure Long-Term Sustainability
2013 Corn Ethanol: New Technologies

Ethanol Plant Level as well as Corn Production

- Front End Oil Recovery - BOS (Brix Oil Separation)
- Protein Recovery - MSC - Maximum Stillage Co-Products
- Fiber Bypassing/Separation - Pre and Post-Fermentation - to be used in conjunction with SGT/Front End Oil and MSC
- Fiber Bypassing/Separation
- Process - Pre Fermentation
- CHP - Combined Heat and Power - 200 psig steam
- CHP - Combined Heat and Power - 400-600 psig steam
- Super Heated Steam Dryers
- Additional Energy and Yield Projects
- Liquefaction Mash Exchanger Plate Expansion
- Fermentation Exchanger Plate Expansion
- CO2 Scrubber Ethanol Reclaim
- 200 Proof Denaturing
- VFD Drive Addition
- DDGS Cooling
- Central Vent Condensing
- Corn Replacement Feed
- Nitrogen Stabilizers
- Control Release Nitrogen
- Soil Testing
- Remote Sensing
- Farm Machinery Technologies Using GPS Tracking Technology
- Modern Hybrids and GEO Traits
- Enzymes Contained in Corn Endosperm
Impact of New Technologies: Plant Level

From 2001 to 2013:

• 34% reduction in thermal energy use and
• a 31% reduction in electricity while
• increasing yield by 7%
• but RFS2 uses 2007 data

<table>
<thead>
<tr>
<th></th>
<th>2001</th>
<th>2008</th>
<th>2012</th>
<th>Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yield (undenatured, gallon/bushel)</td>
<td>2.64</td>
<td>2.78</td>
<td>2.82</td>
<td></td>
</tr>
<tr>
<td>Thermal Energy (Btu/gallon, LHV)</td>
<td>36,000</td>
<td>26,206</td>
<td>23,862</td>
<td></td>
</tr>
<tr>
<td>Electricity Use (kWh/gallon)</td>
<td>1.09</td>
<td>0.73</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>DDG Yield (dry) incl. corn oil (lbs/bu)</td>
<td>15.81</td>
<td>15.73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corn Oil Separated (lbs/bushel)</td>
<td>0</td>
<td>0.11</td>
<td>0.53</td>
<td></td>
</tr>
<tr>
<td>Corn Oil Separated (% of Plants)</td>
<td>0%</td>
<td>33%</td>
<td>74%</td>
<td></td>
</tr>
<tr>
<td>Water Use (gallon/gallon)</td>
<td>5</td>
<td>2.72</td>
<td>2.7</td>
<td></td>
</tr>
</tbody>
</table>
• Impact of New Technologies: Ag Level
• Record 2014 Yield Projections: 171.7 bu/acre (USDA 9/11/14)
Example 1: Corn Kernel Fiber to Ethanol

- Fiber in corn kernel is processed into cellulosic ethanol at existing starch ethanol plants
- Potential to produce 1 billion plus gallons of cellulosic ethanol out of existing dry grind plants
- Quad County Corn Processors just started commercial operation
- Rapid adoption expected mirroring the rate of corn oil separation technologies
Example 2: Corn Replacement Feed

• Higher corn yields have also increased the amount of plant residue (stover etc.) produced by modern hybrids
 – Stover is becoming a management issue

• Growers have started to remove corn stover for use as animal feed in nearby feedlot operations

• Stover, pretreated with ~5% lime substitutes for corn and other feed
Land Use Impact: CRF

• A simplified insight into the co-product impact of stover:
 • A corn field with a yield of 170 bu/acre produces 4.75 tons of corn and approximately an equivalent amount of corn stover
 • If 30% or 1.43 tons of that stover can be sustainably removed for CRF (a reasonable removal rate for many areas) this is equivalent to producing an extra 50+ bushel of corn on that acre (assuming 1:1 substitution in animal diets)
 • In this case this would constitute a 30% land credit form this field
Land Use Impact: DDG

Mumm et al: “Although 40.5% of corn grain was channeled to ethanol processing in 2011, only 25% of U.S. corn acreage was attributable to ethanol when accounting for feed co-product utilization.”
Technologies that Ensure Sustainability

• Verification of Biorefinery Process Integrity
 – Sophisticated process monitoring and quality assurance programs (QAP) including third party verifiers (for example Genscape Inc.)
 – Emerging under RFS2 for starch and cellulosic ethanol

• Agricultural sustainability such as third party verifiers (for example International Sustainability and Carbon Certification) or benchmarking (for example Field to Market)
Contact

Steffen Mueller, PhD
University of Illinois at Chicago
Energy Resources Center
muellers@uic.edu
(312) 316-3498