

Overview: Octane number, efficient engines, ethanol, and infrastructure

Robert L. McCormick

Washington DC June 12, 2015

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

What is Engine Knock?

- Fuel with adequate octane number is required to prevent engine knock
- Knock occurs when unburned fuel/air mixture autoignites – essentially a small explosion in the engine
 - Higher octane fuel is more resistant to auto-ignition

- Knock can cause engine damage
- Modern cars have knock sensors
 - Reduce engine power and efficiency at knock onset
 - Drivers rarely experience knock

What is Octane Number?

- Pump octane is the average of research octane (RON) and motor octane (MON) – also known as (R + M)/2
 - Two tests to cover the full range of engine operating conditions
 80 years ago when this was introduced
- For modern technology engines, RON is the better measure of performance (knock prevention)
- There is no nationwide (ASTM) standard for minimum octane number in the United States

Why do we care?

Strategies to Increase Engine Efficiency (and Lower GHG Emissions):

- Increased compression ratio
 - Greater thermodynamic efficiency
- Engine downsizing/downspeeding
 - Smaller engines operating at low-speed/higher load are more efficient
 - Optimized with 6 to 9 speed transmission
- Turbocharging
 - Recovering energy from the engine exhaust
 - Increase specific power allowing smaller engine
- Direct injection
 - Fuel evaporates in the combustion cylinder, cooling the air-fuel mixture

All of these strategies can take advantage of higher octane (more highly knock resistant) fuels

Ethanol and Octane Number

Ethanol has high RON

- RON = 109
- Relatively low cost source of octane
- What about charge cooling?
 - Ethanol almost 3x higher than gasoline
 - MIT study suggests 1 RON unit increase for every 3°C additional cooling

Optimum blend likely 20-40% ethanol

 Non-linear benefit of higher octane vs. linear decrease in energy density

Large Challenges to New Fuel Introduction

• EPA Requirements – Clean Air Act

- Emission Control Equipment Compatibility
- Toxic Emissions and Health Effects
- Registration
- Misfueling Mitigation

Safety and Infrastructure Compatibility

- Prevention of Leaks
- Fire Safety
- Ground Water Protection

Engine Compatibility – Quality Standards

- New Vehicle Development/Deployment
- Consumer Protection and State Fuel Quality Regulation

• Coordinated investments in vehicles, biorefineries, and refueling infrastructure

- The potential benefits of high octane fuels (HOF) and optimized vehicles appear to be large – pump-towheels
- HOF may also create additional demand for ethanol with significant well-to-pump GHG benefits

Three national laboratories have jointly been conducting a scoping study directed at:

- Understanding hurdles
- Proposing resolutions
- Quantifying potential benefits
- Determining if additional R&D is warranted

E20 to E40 Blends in Refueling Infrastructure

- Most underground tanks are compatible with any ethanol blend
- Potential issue: refueling stations are not required to keep equipment records - a challenge to determine compatibility

 But can be determined by an experienced inspector
- Fuel dispensers would have to be upgraded:
 - Current E10 dispensers can be retrofitted to E25
 - For higher blends an E85 dispenser is required (more expensive)

Estimate that ~ 20% of stations have to carry new fuel for it to be considered convenient