Overview: Octane number, efficient engines, ethanol, and infrastructure

Robert L. McCormick

Washington DC
June 12, 2015
What is Engine Knock?

• Fuel with adequate octane number is required to prevent engine knock
• Knock occurs when unburned fuel/air mixture auto-ignites — essentially a small explosion in the engine
 — Higher octane fuel is more resistant to auto-ignition

• Knock can cause engine damage
• Modern cars have knock sensors
 — Reduce engine power and efficiency at knock onset
 — Drivers rarely experience knock
What is Octane Number?

- Pump octane is the average of research octane (RON) and motor octane (MON) – also known as (R + M)/2
 - Two tests to cover the full range of engine operating conditions 80 years ago when this was introduced

- For modern technology engines, RON is the better measure of performance (knock prevention)

- There is no nationwide (ASTM) standard for minimum octane number in the United States
Why do we care?

Strategies to Increase Engine Efficiency (and Lower GHG Emissions):

- **Increased compression ratio**
 - Greater thermodynamic efficiency
- **Engine downsizing/downspeeding**
 - Smaller engines operating at low-speed/higher load are more efficient
 - Optimized with 6 to 9 speed transmission
- **Turbocharging**
 - Recovering energy from the engine exhaust
 - Increase specific power allowing smaller engine
- **Direct injection**
 - Fuel evaporates in the combustion cylinder, cooling the air-fuel mixture

All of these strategies can take advantage of higher octane (more highly knock resistant) fuels
Ethanol and Octane Number

- Ethanol has high RON
 - RON = 109
 - Relatively low cost source of octane

- What about charge cooling?
 - Ethanol almost 3x higher than gasoline
 - MIT study suggests 1 RON unit increase for every 3°C additional cooling

- Optimum blend likely 20-40% ethanol
 - Non-linear benefit of higher octane vs. linear decrease in energy density
Large Challenges to New Fuel Introduction

• EPA Requirements – Clean Air Act
 – Emission Control Equipment Compatibility
 – Toxic Emissions and Health Effects
 – Registration
 – Misfueling Mitigation

• Safety and Infrastructure Compatibility
 – Prevention of Leaks
 – Fire Safety
 – Ground Water Protection

• Engine Compatibility – Quality Standards
 – New Vehicle Development/Deployment
 – Consumer Protection and State Fuel Quality Regulation

• Coordinated investments in vehicles, biorefineries, and refueling infrastructure
Joint National Lab Study

• The potential benefits of high octane fuels (HOF) and optimized vehicles appear to be large – pump-to-wheels

• HOF may also create additional demand for ethanol with significant well-to-pump GHG benefits

Three national laboratories have jointly been conducting a scoping study directed at:
• Understanding hurdles
• Proposing resolutions
• Quantifying potential benefits
• Determining if additional R&D is warranted
E20 to E40 Blends in Refueling Infrastructure

- Most underground tanks are compatible with any ethanol blend
- Potential issue: refueling stations are not required to keep equipment records - a challenge to determine compatibility
 - But can be determined by an experienced inspector
- Fuel dispensers would have to be upgraded:
 - Current E10 dispensers can be retrofitted to E25
 - For higher blends an E85 dispenser is required (more expensive)

Most retail stations are small businesses

Estimate that ~ 20% of stations have to carry new fuel for it to be considered convenient