Briefing on International Dimensions of Renewable Energy

Dr. Robert F. Ichord, Jr. Deputy Assistant Secretary for Energy Transformation Bureau of Energy Resources U.S. Department of State February 5, 2013

Bureau of Energy Resources (ENR)

Sustainable, Affordable, Reliable, Access to Diverse Energy Supplies

Managing the Geopolitics of Energy

- > Wealth/Power/Influence
- Market Dynamics
- > Energy Frontiers
- Spare Capacity

Stimulate Markets for Energy Transformation

Private and Donor Finance
 Innovation & Investment
 Access to Electricity/
 Regional Interconnection
 Tariffs and Regulations
 Renewable/Efficient/Clean
 Technology

Transparency , Governance, and Access to Energy

- Resources: Budgets/People
- Energy Poverty
- Markets Amid Poverty
- > Entrepreneurship/Innovation

Growth in Energy Consumption

Cumulative Global Energy Consumption Growth, 2010-2035 (Mboe/d)

Falling Pricing for Renewables

Figure 1. Cost of solar in the US (source: SEIA Q2 market report).

Current container Load (2MWs) pricing for Solar PV panels below \$0.75/watt ;
Solar thin film PPA contracts available at \$0.06/kWh

Figure 2. Long-term price trend for solar and wind (source: UN IPCC).

- Current Brazil Wind PPA's below \$0.05/kWh
- China Wind Energy Equipment currently available for <\$600 per installed MW of capacity.

Global Power Sector Investments

Power: \$16.9 trillion

More than 40% of global investment in the power sector goes to transmission and distribution.

60% of investment is in the non-OECD to meet growing demand. New Investment in Electricity Generation, 2012-2035 (\$ billion)

	OECD	Non- OECD	World	
Coal	451	1,157	1,608	
Gas	436	605	1,041	
Oil	16	59	75	
Total Fossil	903	1,821	2,724	
Total Nuclear	360	583	<i>943</i>	
Bio-energy	368	280	648	
Hydro	418	1,130	1,548	
Wind	1,145	984	2,129	
Solar PV	717	542	1,259	
Other*	226	208	434	
Total Renewable	2,874	3,144	6,018	
TOTAL GENERATION	4,137	5,548	9,685	

Investment for Access

> 1.3 billion people currently lack access to electricity.

Achieving universal electricity access by 2030 requires \$48 billion in annual investment – 3% of the total investment in the energy sector.

INVESTMENT FUNDS

Risk: Currency

LARGE PROJECTS

Risk: Power Purchase Agreement

Utilities

LOCAL INTERMEDIARIES

Risk: Capitalization & Capacity

Risk: Repayment

SMALL PROJECTS

Risk: Quality

Global/Regional

Government Role and Subsidies:

2012 Policies:

- Countries with at least one RE-specific Policy and RE Target
- Countries with at least one RE-specific Policy
- Countries with at least one RE Target
- Countries with neither RE-specific Policies nor RE Targets

European Tenders:

Actor	Advantage/Disadvantage
Government/Regulat or	 Competitive price discovery (prevents overcompensation) Control type, quality and location of renewables installed Possibility to incorporate other criteria (e.g. jobs, environmental impact, etc.)
Developers	 Fast response Required (usually about two months) Preference given to large Developers who have resources to aplly quickly High Transaction costs (deposit required) and complicated application process Guaranteed prices (or premiums) offer protection from market volatility
Consumers	• Controlled impact on electricity prices, known in advance 11

Opportunities for distribution utility reform

•Utility reform is aimed at reducing the fiscal burden of financing public services

•Non-technical losses can be reduced through a variety of solutions, including:

Legal and regulatory reform

•Public outreach

Physical configurations and loss-prevention techniques

•Improved cables

•Meters, specialized software, and advanced technologies

•Institutional reform to strengthen the investment climate can be accomplished through numerous options, including: contracts reform, management reform, or privatization.

Case Study – split type prepayment meters as a technical solution: Sudan

Revenue collections more than doubled in the first year after deployment of pre-pay split-meters

Power system stress - more than capacity

July 2012 catastrophic power failure

Source: Platts

System Challenges for Renewables:

Connect 2022: A Business Case for Interconnection Carit

Mexico: average residential tariff \$.09/kWh (2010)

Panama-Colombia:

Central America could save up to \$2.3 mn; marginal *generation* cost of hydro in Colombia is **\$.05/kWh;** *retail* price in Panama **\$.19-22/kWh** Central America: SIEPAC to enter full operation in 2012, with potential savings of 10-15% in the average generation cost (IDB)

> Chile: residential tariff \$.18/kWh (2011)

Caribbean region:

average consumer tariff **\$.20-.50/kWh** (WB 2011)

Barbados: consumer tariff **\$.32/kWh** (2010)

Guadeloupe: France subsidizes to Paris price of **\$.11/kWh** (2010)

> Jamaica: Generation costs \$.24/kWh and \$.39/kWh residential consumer price (2011)

Sustainable Energy For All (SE4ALL):

Three Aspirational Goals by 2030

Environmental and Climate Change:

Renewable Scenario	By Year	Electricity	Heat	Transport
ExxonMobil (2012)	2040	16%	-	-
IEA WEO (2012) "Existing Policies"	2035	24%	12%	5%
BP (2012)	2030	25 %	-	7%
IEA WEO (2012) " New Policies"	2035	31%	14%	6%
IEA WEO (2012) 2 °C. "450 ppm"	2035	48 %	19%	14%
IEA Tech. Perspectives (2012) "2 °C."	2050	57%	-	39%
IEA Tech. Perspectives (2012) "2 °C. Hi RE"	2050	71%	-	-