

U.S. Department of Transportation Federal Highway Administration Office of Planning, Environment and Realty Sustainable Transport & Climate Change Team

Gulf Coast 2 and FHWA Climate Resilience Efforts

Robert Kafalenos, FHWA May 22, 2014

Photo: Culvert under Airport Boulevard (Mobile, AL)

Climate Change Adaptation at FHWA

Goal: Regular/Systematic consideration of climate change vulnerability and risk in transportation decision making, at:

- 1) **Systems Level**: Transportation planning, Asset Management
- 2) Project Level: Environmental process, Preliminary Engineering, Design, Construction, Operations, Maintenance

Systems Level Goal: Consideration in Transportation Planning, Asset Management

Key Product:

• Updated Climate Change & Extreme Weather Vulnerability Assessment Framework (2015)

Activities:

- Climate Resilience Pilots round 2
- Gulf Coast 2 (Mobile)
- Hurricane Sandy Follow-up and Vulnerability
 Assessment & Adaptation Analysis
- Central NM Climate Change Scenario Planning Project

Project Level Goal: Consideration in Environmental Process, Preliminary Engineering, Design, Construction, Operations, Maintenance

Key Products:

Updated engineering manuals, methods and processes

Activities:

- Engineering Assessments
 - Gulf Coast 2 (Mobile)
 - Hurricane Sandy Follow-up and Vulnerability Assessment & Adaptation Analysis
 - Transportation Engineering Approaches to Climate Resiliency
 - Climate Resilience Pilots
- HEC 25 Vol 2: Highways in the Coastal Environment: Extreme Events
- Hydrology, hydraulic engineering research efforts, etc.

FHWA's Climate Change & Extreme Weather Vulnerability Assessment Framework (2012)

1. Define Project Scope

- Objectives
- Relevant Assets
- Climate Variables

2. Assess Vulnerability

- Climate Inputs
- Asset data, criticality, sensitivity
- Vulnerabilities, risk

3. Integrate Vulnerability Into Decision Making

Climate Resilience Pilot & Other Project Locations

Gulf Coast 2 Project (Mobile, AL)

Federal Highway Administration

Primary Phase 2 Tasks

- Task 1: Identify critical transportation assets in Mobile (complete)
- Task 2: Identify climate effects, assess infrastructure sensitivity (complete)
- Task 3: Assess vulnerability of critical assets (Summer 2014)
- Task 4: Develop transferable risk management tools (Summer 2014)

7

Completed tasks: FHWA website

Phase 2 performed by ICF International (prime), Parsons Brinckerhoff, South Coast Engineers, and Texas A&M, with support from USGS and Katharine Hayhoe (Texas Tech)

Projected Climate Change in Mobile: Temperature and Precipitation

Increases in Temperature

 The number of heat events above 95°F and 100°F are projected to increase dramatically

- Uncertain changes in Precipitation
 - 100-year precipitation event is projected to be more intense in the future, though there is a wide spread of results across models

Sample of Storm Surge Analyses

 Scenarios based on historic hurricanes, with varying

Track

- Intensity
- Sea level rise
- Does not examine loss of barrier islands

Hurricane Katrina Natural Path Scenario Hurricane Katrina Shifted Path Scenario with 0.75 meter Sea-Level Rise

Using Indicators to Score Vulnerability

- V = Function of (E, S, A)
- Chose indicators to represent exposure, sensitivity, and adaptive capacity
 - Characteristics that could indicate an asset may or may not be vulnerable
- Averages of indicators drive scoring
 - Weighting

Example Indicators

Exposure

- Temp-Days above 95°F
- 24-hour precipitation
- Storm surge height
- Wind speed exceeds threshold above which impacts may occur (yes/no)
- Inundated by sea level rise (yes/no)

Sensitivity

- **Temp** Pavement binder, traffic (roads)
- **Precip** FEMA flood zones, ponding, surface permeability (all modes)
- **Storm surge** Height & condition (bridges), electric signaling & soil type (rail), access (transit)
- Wind Building height, materials, roof type; road sign or signal density (road and rail)
- Sea level rise Drainage (air), protection (transit, roads)

Adaptive Capacity

- Speed to recover asset – cost of improvement (bridges), identified as a priority in emergency planning (rail, air, transit)
- **Redundancy** detour length (bridges, air), number of terminals/ runways (air), ability to reroute (transit and rail), rail yard interchange utility (rail)
- System disruption duration (climate variable-specific)

Highways Storm Surge Vulnerabilities

Segment Name	Vulnerability Score (Least Extreme)	Vulnerability Score (Most Extreme)	Data Availability*
Telegraph Road, from Downtown to Baybridge Road	3.2	4.0	92%
The Causeway (Battleship Parkway)	3.2	4.0	91%
I-10 Tunnel (Wallace Tunnel)	3.2	3.6	87%
SR-163 (Dauphin Island Parkway), from Island Road to Terrell Road	3.2	3.6	81%
I-10 Bridge across Mobile Bay	2.5	3.3	86%
Old Spanish Trail, between Cochrane Bridge and the tunnels	2.7	3.1	87%
Dauphin Island Bridge	2.6	3.0	100%
SR-188, where it crosses the river just North of Bayou la Batre	2.5	2.9	87%
Intersection of SR-188 and CR-59 (Bellingrath Road), near Fowl River	2.5	2.9	87%
SR-193 (Dauphin Island Parkway), from Dauphin Island Bridge to CR-188	2.5	2.9	92%

U.S. Department of Iransportation

Storm Surge Vulnerability

- Highest where Mobile River meets Mobile Bay
- Low-lying coastal roads and bridges
- Location is biggest driver

Example: The Causeway (R10)

- 17-29 ft. of storm surge/waves
- Damaged in past, unprotected, low approach, low embankment
- High replacement cost

I-10 – Mileposts 24 to 25 Road Alignment Exposure to Storm Surge

Federal Highway Administration

Implications

- Consider environmental conditions over project life
 Local road; Interstate; Major bridge
- Climate change will affect maintenance cycles, investment decisions on when/where to invest, reconstruct
 - Added uncertainty (e.g., multiple scenarios)
 - Expect higher maintenance and operations costs; potentially costlier designs
- Adaptation can save funding over the long term
 - Focus on solutions
 - Emphasize proactive strategies vs. reacting to "disaster"

Tools Development

Federal Highway Administration

New Web Resource: Virtual Framework

- New web resource to house FHWA adaptation tools and resources
- Organized around the FHWA Vulnerability Assessment Framework
- Include guidance for each step, training videos, case studies, tools, and links to related resources
- Available mid-2014

Thank you

http://www.fhwa.dot.gov/environment/climate_change/adaptation/

Sustainable Transport and Climate Change Team FHWA Office of Natural Environment <u>Robert.Kafalenos@dot.gov</u>

