

Finding the New Optima for Fuels & Engines

EESI Briefing

December 14th, 2015

Sustainable TRANSPORTATION

Renewable ELECTRICITY GENERATION

Energy Saving HOMES, BUILDINGS, & MANUFACTURING

Goal: better fuels and better vehicles

ICEs

will dominate fleet

for decades

higher efficiency, low emission engines

are possible

current fuels Constrain engine design

Brake Thermal Efficiency (%)

Engine: Ford Ecoboost 1.6L 4-cylinder, turbocharged, direct-injection, 10.1 CR

Source: C.S. Sluder, ORNL

the potential of kineticallycontrolled combustion

spark ignition gasoline

Low Reactivity Fuel

kinetically-controlled combustion

Range of Fuel Properties TBD

compression ignition diesel

High Reactivity Fuel

the OPPORTUNITY

co-optimize fuels and engines

accelerate, coordinate, and focus

30% per vehicle petroleum reduction via efficiency and displacement

LD fuel consumption (billion gallons/year)

17 year fleet turnover

2050

impact requires

2030

vehicle introduction

2030
vehicle introduction
requires
2020s
solutions

2020s solutions requires R&D today the

APPROACH & SCOPE

what fuel properties are important?

property-based selection criteria

lower GHG fuels are essential

biofuels (biochemical and thermochemical)

low-carbon petroleumderived fuels

what molecules provide desired properties? OH OH

identify market-driven solutions

barriers to wide-scale deployment

Optima evaluation criteria

- GHG reduction
- 2. Engine/powertrain/vehicle performance
- 3. Incremental fuel cost
- 4. Incremental vehicle cost
- 5. Land/water use
- 6. Infrastructure compatibility
- 7. Emissions/aftertreatment
- 8. Health effects
- 9. Legacy fleet compatibility
- 10. Consumer acceptance
- 11. Scalability
- 12. Global product harmonization

the

STAKEHOLDERS

what is Optima?

multi office

BIOENERGY TECHNOLOGIES OFFICE
VEHICLE TECHNOLOGIES OFFICE

multi lab

multi year

new initiative

cross-cutting potential

Science Fossil ARPA-E

role of Others

industry:

close coordination essential to identify/mitigate barriers and hand-off effectively

R&D community:

leverage work at universities and contract labs as appropriate

others:

technical and implementation guidance from government agencies

Optima Plan

- FY16 Budget Request \$27M
- Oct 1st Kick-off (builds on FY15 efforts)

Thrust 1 Thrust 2 2025 commercial entry 2030 commercial entry spark Advanced compression ignition (ACI) ignition (SI) including low temperature, kinetic regimes Kinetically controlled Octane & beyond Low temperature Downsized, boosted combustion engines, higher CR Maximize fuel FY16 O1 -Select 20 fuels efficiency with very FY17 Q2- Go/No Go vs. low emissions existing high octane Less known needs alternatives Parallel to Thrust 1 **High Reactivity Fuel** Range of Fuel Properties TBD Low Reactivity Fuel (diesel) (new fuel) (gasoline) high cetane undetermined fuel needs high RON

Backward / Forward Compatibility Legacy fleets, Thrust 1, Thrust 2

Optima a potential model

- 1. Performance based vs. formulation spec
- 2. Emissions (wells-to-wheel, criteria, other)
- 3. Compatibility (known design limits)

R&D to broaden suite of available technologies

