Transforming ENERGY

Energy Earthshots and the National Laboratories

Peter Green, Deputy Laboratory Director for Science and Technology and Chief Research Officer National Renewable Energy Laboratory February 1, 2024

Coast to Coast

The **17** National Laboratories have served as the leading institutions for scientific innovation in the United States for more than seventy years.

NREL at a Glance

• 3,700 Workforce (as of 9/2023)

1,200 Publications annually

- Technical Reports
- Archival peer reviewed

World-class research expertise in:

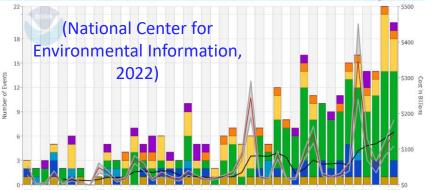
- Renewable Energy
- Sustainable Transportation & Fuels
- Buildings and Industry
- Energy Systems Integration

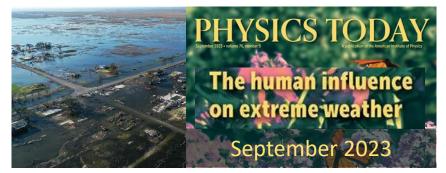
Over 1000 Active Partnerships

- Industry
- Academia
- Government

4 Campuses operate as living laboratories

More Than 1,000 Active Partnerships in FY 2023

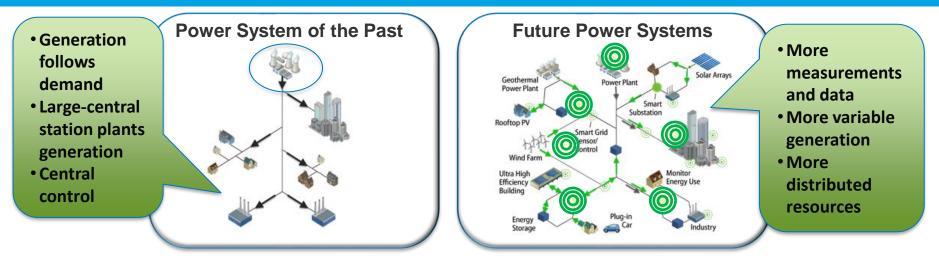

Agreements by Business Type


Funding by Business Type

Global Challenges Necessitate Earthshots

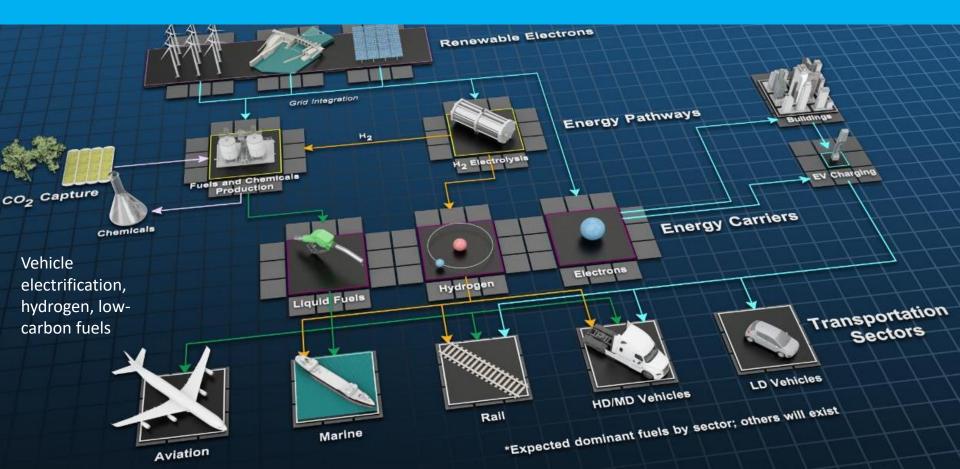
Billion-dollar disaster events in the U.S.

1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 202



Economist, March 2018

Emissions from Sectors: EPA (2021) *Transportation* (29%); *Electricity* (25%) *Industry* (23%); *Buildings* (13%)


Need for a future energy system to enable entirely new ways -low energy, low carbon -to produce chemicals, materials, fuels

Evolution of the Conventional Power Grid Toward a Future Low-Carbon Energy System

- The grid is undergoing changes, addressing current and future consumer needs, increased use of renewable generation, decarbonization, improved resilience
- The Grid Modernization Initiative (GMI): U.S. Department of Energy (DOE) and the National labs, with industry, work collaboratively to achieve the grid of the future.

NREL Decarbonization Strategy: Transportation

Earthshots Enable a Future Low Carbon Economy - 2050 Net Zero

Decarbonize power generation

Wind and solar, with geothermal, hydro, nuclear (fossil)

- Floating offshore wind
- Geothermal

- GRID: Autonomous control of the grid
 - Electrification
 - Distributed energy resources (energy storage, generation-_ primarily renewables, smart homes, devices, EV charging)

Decarbonize transportation, buildings

- Grid interactive buildings/communities
- Transportation –electrification, low carbon fuels
- Decarbonize industrial processes

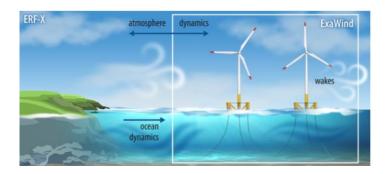
Low-carbon fuels and processes

- Hydrogen infrastructure
- Biomass conversion to chemicals, materials, fuels
- Carbon capture, storage, utilization:
 - CO₂ conversion to chemicals, materials, fuels

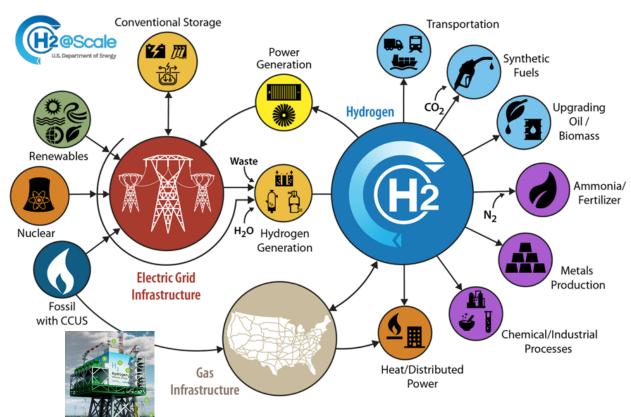
Long-duration storage

- - Affordable home energy
 - Industrial heat
 - Clean fuels and products
 - Carbon-negative
 - **HYDROGEN**

Earthshots: DOE, National Labs, Academia, and Industry Collaboration


Future energy system scenarios, market and policy, sustainability and technoeconomic analytics were exploited to develop each Energy Earthshot.

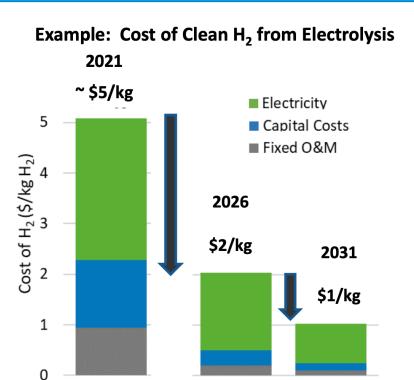
$^{\sim}$ 1 TW of wind installed in the US by 2035



BERKELEY LAB Bringing Science Solutions to the World

Net-zero targets → U.S. needs ~100 million metric tons of H₂ per year by 2050

Hydrogen: grid, transportation, industry, buildings, agriculture


- Interconversion of electrical and chemical energy
- Grid integration
- Fuel, feedstocks, chemicals/materials
- CO₂ capture, conversion, *Hydrogen Earthshot (1 1 1)*

Context: Hydrogen Shot: "1 1 1" \$1 for 1 kg in 1 decade for clean hydrogen

Launched June 7, 2021 Summit Aug 31-Sept 1, 2021

Electrolysis: One of several pathways to reach goals

- Reduce electricity cost from >\$50/MWh to
 - \$30/MWh (2025)
 - \$20/MWh (2030)
- Reduce capital cost >80%
- Reduce operating & maintenance cost >90%

Bipartisan Infrastructure Law – \$9.5B H2 Highlights

- \$8B for at least 6-10 regional clean H2 Hubs
- \$1B for electrolysis (and related H2) RD&D
- \$0.5B for clean H2 technology mfg. & recycling R&D
- Aligns with H2 Shot priorities by directing work to reduce cost of clean H2 to \$2/kg by 2026
- National H2 Strategy & Roadmap

Inflation Reduction Act

• Up to **\$3/kg H2** Production Tax Credit for producing clean hydrogen (<0.45 kg CO2eq/kg H2)

2020 Baseline: PEM low volume capital cost ~\$1,500/kW, electricity at \$50/MWh. Need less than \$300/kW by 2025, less than \$150/kW by 2030 (at scale)

(Adapted from multiple briefing slides from Sunita Satyapal, DOE's HFTO)

National Laboratory Collaboration is Critical for Success

Clean Fuels & Products™

Mobilize Renewable Carbon Resources

Expand and Develop New Feedstocks:

Develop and utilize new technologies to maximize carbon incorporation and retention to generate low-cost, low-emissions biomass, waste, and CO₂ feedstocks at scale

Examples:

Forest residues, agricultural wastes, municipal solid waste, recycled materials, energy crops, algae, CO₂

Carbon-Efficient Conversion

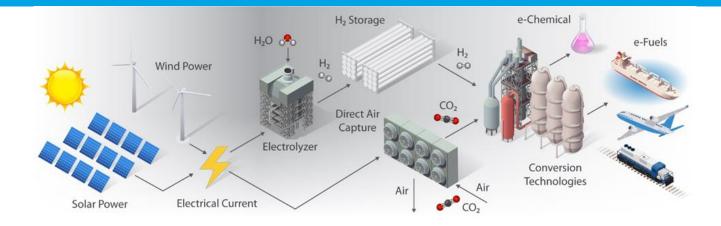
New Conversion Paradigm:

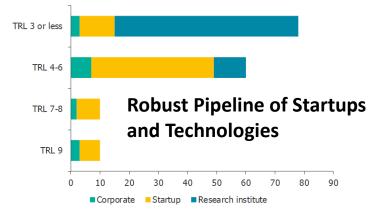

Develop technologies to maximize conversion of resources into fuels and chemicals utilizing clean power, clean hydrogen, clean heat, and optimized reactor systems

Examples:

Biomass gasification to SAF, solar fuels, power to liquids, catalytic conversion of CO₂

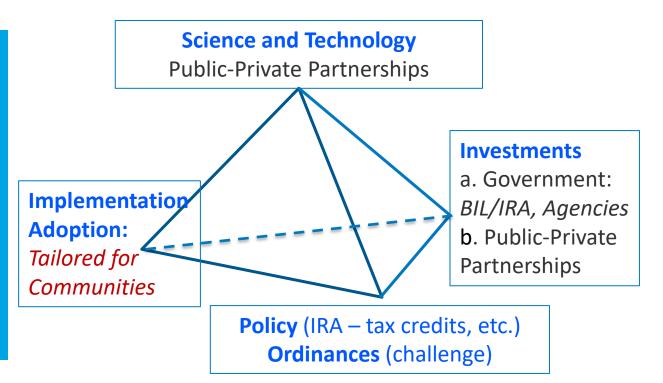
>85% net reduction vs. fossil-based sources





*This Energy Earthshot assumes that 50% of marine, rail, off-road, hydrocarbon chemicals and 100% of aviation demand will be met by hydrocarbon fuels in 2050.

CO₂ Utilization to Fuels and Chemicals


Market value of CO₂ Utilization Products in 2017

a. Fuels \$3.82 Trillion
b. Building materials \$1.37 Trillion
c. Plastics \$0.41 Trillion
Jacobson and Lucas, Carbon 180, 2018

Global CO₂ Initiative, Implementing CO₂ Capture and Utilization at Scale and Speed, May 2022

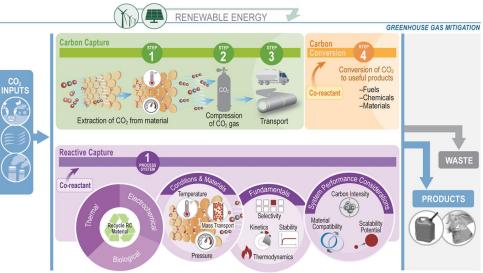
FINAL REMARKS

- Achieving each Earthshot requires a highly orchestrated team of researchers, with complimentary expertise
- Science and Technology Advances alone are not sufficient to achieve Net Zero Emissions

Transforming ENERGY

Thank you

Emerging Approach: Reactive Capture of CO₂


Reactive Capture Definition: The coupled process of capturing CO₂ from a mixed gas stream and converting it into a valuable product *without* going through a purified CO₂ intermediate

Can Include:

- Integration of CO₂ separation and conversion in one step
- Integration of separation and conversion in one unit
- Process intensification

Product Targets:

Form a valuable product, or mixture of products, in a more reduced state than CO₂

M. Freyman, et al., Joule 7 (2023) 631-651.