

WIRFS

WIRES University Overview of ISO/RTOs

Mike Ross Senior Vice President Government Affairs and Public Relations Southwest Power Pool

OUR MISSION Helping our members work together to keep the lights on ... today and in the future.

Northeast Blackout of 1965

5:28 P.M., NOV. 9th THE LIGHTS WENT OUT

> POWER FAILURE BLACKS OUT NEW YORK; THOUSANDS TRAPPED IN THE SUBWAYS; LOOTERS AND VANDALS HIT SOME AREAS

State Troopers Sent Into City As Crime Rises Some Divilans Assist

Police - 65 Blackout Peaceful in Contrast

Some Led Others by Flashlight, Lightning Bolt: ome Knocked on Doors to Help How It Struck

Westchester Is Also Darkened After Lightning Hits Line

NOVEMBER 19 . 1965 . 35 ¢

its view societing deat during blackout, moon addauts in whichwa of

Northeast Blackout of 1965

Electric Reliability Act of 1967 & North American Electric Reliability Corporation (NERC)

- Tuesday, November 9, 1965
- Affected parts of Ontario in Canada and Connecticut, Massachusetts, New Hampshire, New Jersey, New York, Rhode Island, and Vermont in the United States
- Over 30 million people and 80,000 square miles without electricity for up to 13 hours

Northeast Blackout of 2003

5

NORTHEAST BLACKOUT 2003

Led to the Energy Policy Act of 2005

» SPP

Our Major Services

Reliability Coordination Market Operation Transmission Planning Transmission Service/Tariff Administration

Balancing Authority
Facilitation
Standards Setting
Compliance Enforcement
Training

OUR APPROACH: Regional, Independent, Cost-Effective and Focused on Reliability

Some Activities Outside of SPP's Responsibility

- Transmission Siting
- Generation Planning/Siting
- Transmission/Generation Construction
- Transmission/Generation Permitting
- Credit/Allowance Trading Oversight

Independent System Operator (ISO) / Regional Transmission Organization (RTO) Map

[®]SPP

The SPP Footprint: Members in 14 States

- Arkansas
- Kansas
- Iowa
- Louisiana
- Minnesota
- Missouri
- Montana
- Nebraska
- New Mexico
- North Dakota
- Oklahoma
- South Dakota
- Texas
- Wyoming

United States Electric Grid

Operating Region

- Miles of service territory: 575,000
- Population served: 18M
- Generating Plants: 703
- Substations: 4,757
- Miles of transmission: 60, 944
 - 69 kV 13,532
 - 115 kV 14,269
 - 138 kV 9,117
 - 161 kV 5,647
 - 230 kV 7,608
 - 345 kV 10,772

SPP's 94 Members: Independence Through Diversity

Cooperatives (20)

- Investor-Owned Utilities (16)
- Independent Power Producers/Wholesale Generation (13)
- Power Marketers (12)
- Municipal Systems (14)
- Independent Transmission Companies (10)
- State Agencies (8)
- Federal Agencies (1)

REGULATORY ENVIRONMENT

- Incorporated in Arkansas as 501(c)(6) nonprofit corporation
- Federal Energy Regulatory Commission (FERC)
 - Regulated public utility
 - Regional Transmission Organization
- North American Electric Reliability Corporation (NERC)
 - Founding member
 - Regional Entity

GOVERNANCE

- Independent Board of Directors
- Members Committee
- Regional State Committee
- Working Groups

Reliability Coordination: air traffic controllers of the bulk power grid

Monitor grid 24 x 365

Anticipate problems

Take preemptive action

Coordinate regional response

Independent

Comply with more than 5,500 pages of reliability standards and criteria

• SPP

16

2015 Energy Capacity* by Fuel Type

17

2015 Energy Consumption by Fuel Type

SPP

18

What Kind of Markets Does SPP Operate?

- Transmission Service: Participants buy and sell use of regional transmission lines that are owned by different parties.
- Integrated Marketplace: Participants buy and sell wholesale electricity in day-ahead and real-time.
 - Day-Ahead Market commits the most costeffective and reliable mix of generation for the region.
 - Real-Time Balancing Market economically dispatches generation to balance real-time generation and load, while ensuring system reliability.

Integrated Marketplace Savings

- Market continues to provide savings even with extremely low natural gas prices
- First year net savings calculated to be \$380 million
- 2015 annual net savings calculated to be \$422 million
- At the end of September, 2016 the savings amount was over \$1 Billion from the Integrated Marketplace

Transmission Planning

- Reliability
- Economics
- Public Policy

Integrated Transmission Planning (ITP)

Generation Expansion in SPP Over the Last Decade

24

Transmission Expansion in SPP Over the Last Decade

• SPP

25

Transmission Investment Directed By SPP

Annual Transmission Investment Directed By SPP

26

Who Pays for Transmission Projects?

- Sponsored: Project owner builds and receives credit for use of transmission lines
- Directly-assigned: Project owner builds and is responsible for cost recovery and receives credit for use of transmission lines
- Highway/Byway: Most SPP projects paid for under this methodology

Voltage	Region Pays	Local Zone Pays
300 kV and above	100%	0%
above 100 kV and below 300 kV	33%	67%
100 kV and below	0%	100%

Renewables in SPP

The highest wind speed in the country is within SPP Balancing Authority

29

Wind Energy Development

- SPP's "Saudi Arabia" of wind: Kansas, Oklahoma, Nebraska, Texas Panhandle, and New Mexico
 - 60,000-90,000 MW potential
 - More wind energy than SPP uses during peak demand
- 15,782 MW capacity of in-service wind*
- 34,730 MW wind in all stages of development*

 Includes Generation Interconnection queue and executed Interconnection Agreements

* December 2016

Wind Capacity has grown significantly

31

Wind units are concentrated in the middle of the footprint

øspp

32

Renewables impacts to SPP

- Peak Wind Penetration level: 49.17% April 2016
- Peak instantaneous Wind generation: 12,336 MW December 2016
- High impact on congestion and loading of the transmission system
- Wind can cause capacity issues by
 - Not showing up during times of high demand, contributing to capacity shortages
 - Showing up too high during times of low demand, contributing to "Min Gen" issues
 - Uncertainty complicating unit commitments
- Short-term, intra-hour changes in wind also require reserves to maintain balance between generation and obligations
- Wind forecast is crucial for SPP to have the right generation online at the right time, while maintaining the reliability and economic efficiency of the regional transmission grid.

MDDERNIZING THE VALUE OF TRANSMISSION

www.SPP.org/value-of-transmission

SPP's Value of Transmission Study

- Evaluated 348 projects from 2012-14, representing \$3.4B of transmission investment
- Evaluated benefit metrics
 - Adjusted Production Cost (APC) Savings
 - Reliability and Resource Adequacy Benefits
 - Generation Capacity Cost Savings
 - Market Benefits
 - Other industry and SPP-accepted metrics
- APC Savings alone calculated at more than \$660k/day, or \$240M/year.
- Overall NPV of all benefits for considered projects are expected to <u>exceed \$16.6B</u> <u>over 40 years.</u>

For every \$1 of transmission investment made in 2012-2014, SPP expects at least \$3.50 of benefit to be provided to rate-payers

