

Well-to-Wheels (WTW) Analysis of High Octane Fuels

Michael Wang

Systems Assessment Group Energy Systems Division Argonne National Laboratory

Motivation for HOF WTW: Addressing Tradeoff Between Vehicle Efficiency Gain and HOF Production Penalty

		Efficiency Gain (%)		
Reference	RON	Engine	Vehicle	Comment
Nakata et al.	100	7.4		Constant load,
(2007)	100	/.4		Compression ratio = 13
Leone et al. (2014)	102		5.5-8.8	Compression ratio = 13
Hirshfeld et al. (2014)			6–9	Compression ratio =13
Speth et al. (2014)	98		3.0–4.5	
This study	100		5	We considered 10% for E40 as a sensitivity case

Scope of HOF WTW:

- Petroleum refinery linear programming (LP) modeling of producing HOF with different ethanol blending levels
 - ✓ Analyze refinery challenges to meet RON and RVP requirements
- WTW analysis of HOF-fueled vehicles with refinery efficiency and vehicle efficiency

WTW Approach

- Petroleum refinery LP modeling for PADDs 2 and 3 (with Jacobs Consultancy)
 - Key fuel spec constraints: RON and Reid Vapor Pressure (RVP)
 - HOF market share is a key parameter for refinery LP modeling (from vehicle choice models by NREL)
 - No new capital investment assumed for refineries
 - Gasoline export is allowed with discount after the US gasoline demands are met
- Crude recovery and ethanol production
 - Canadian oil sands, and cellulosic and corn ethanol production were updated
- Vehicle efficiency gains
 - Baseline regular gasoline (E10, RON 92) fuel economy: 23.6 mpg
 - Two assumptions for HOF MPGGE relative to regular E10:
 - Uniform 5% MPGGE gain based on 100 RON for E10, E25, and E40 (RON is the driver)
 - Fuel parity gain assumption: 10% gain for HOF E40

Detailed Refinery LP Modeling Needed for Reliable WTW

- □ Reliable modeling of complex refinery industry
- Detailed modeling results of refining process units, intermediate products flow rates, utility consumptions, etc.

✓ To evaluate the energy and emissions burden of individual refinery products

Overall Refinery and Gasoline Blendstock Energy Efficiencies Are Subject to Small Changes with EtOH Blending Level and HOF Share

- BOB: Blendstock for Oxygenate Blending; BOB + Ethanol = Finished Gasoline
- E10 HOF is feasible only up to ~25% of gasoline market share
 - A result of no new capital investment assumption
 - PADD2 shows similar trends, though with overall lower efficiency

Refining Energy Efficiencies Vary Between Domestic Blendstock and Exported Gasoline

- Domestic BOB efficiency has little change
- Possible spill over of energy penalty from domestic BOB to export gasoline pool
 - Up to 4% drops in export gasoline refining efficiency from the baseline (non-HOF) case
 - Up to 2.5 g CO2e/MJ increases in export gasoline's GHG emissions from the baseline
 - But combined change is small with allocated to HOF (<1 gCO₂e/MJ HOF)

HOF Blendstock: GHG Emission Variation of HOF Blendstock Component Is Small

- Larger WTW GHG emissions in PADD2 is due to a larger share of GHG-intensive oil sands
- Adjustment for the spill over is 0.2 gCO₂e/MJ of HOF on average (up to 0.8 gCO₂e)
- Baseline BOB is Business-As-Usual
 - Market shares of different gasoline types: 92% of regular E10 and 8% of premium E10

Finished HOF: Higher Ethanol Blending Level Contributes to Lower WTW GHG Emissions of HOF (per unit of energy results, PADD3)

Corn stover ethanol is used as a surrogate for cellulosic ethanol

Vehicle Fuel Economy Gains Provide Additional WTW GHG Emissions Reductions (per mile results, PADD3)

- E10, E25 and E40 HOF \rightarrow 5% MPGGE gain (volumetric fuel parity at E25)
- E40 HOF Maximum \rightarrow 10% MPGGE gain (volumetric fuel parity at E40)

Cellulosic E25 and E40 HOF Can Reduce GHG Emissions by Up to 17% and 31% Relative to Baseline Gasoline, Respectively (based on per mile results)

- GHG reduction w/ vehicle efficiency gain: 5% with 5% MPGGE gain, 9% with 10% MPGGE gain
- Refinery GHG Impact: <1% (small)</p>
- Ethanol Blending GHG Impact
 - <u>Corn Ethanol:</u> 0% for E10, 4% for E25, 9% for E40
 - <u>Corn Stover Ethanol</u>: 3% for E10, 12% for E25, 23% for E40

WTW Conclusions

- Vehicle efficiency gains and ethanol blending are the two dominant factors for WTW GHG emissions reduction
- Impacts of HOF production on <u>refinery GHG emissions is</u> <u>relatively small</u>
- Ethanol can be a major enabler in producing HOF with significant vehicle efficiency gains and a large reduction in WTW GHG emissions

Summary

- Ethanol blended at 25 to 40% provides high octane number and fuel/air charge cooling
 - E25 to E40 can be used in over 17M FFVs currently deployed
- HOF enables production of more efficient, optimized vehicles
- Biofuel production and vehicle adoption models suggest potential HOF consumption of up to 30 billion gallons ethanol in 2035
- WTW GHG emission reductions range from 9-18% for corn ethanol HOF and 17-31% for cellulosic ethanol HOF
- There are challenges to introduction of ethanol HOF
 - Underground storage tanks are likely compatible
 - Fuel dispensing equipment will require upgrading
 - Challenges of developing supply and demand in concert

