Well-to-Wheels (WTW) Analysis of High Octane Fuels

Michael Wang

Systems Assessment Group
Energy Systems Division
Argonne National Laboratory
Motivation for HOF WTW: Addressing Tradeoff Between Vehicle Efficiency Gain and HOF Production Penalty

<table>
<thead>
<tr>
<th>Reference</th>
<th>RON</th>
<th>Efficiency Gain (%)</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Engine</td>
<td>Vehicle</td>
</tr>
<tr>
<td>Nakata et al. (2007)</td>
<td>100</td>
<td>7.4</td>
<td></td>
</tr>
<tr>
<td>Leone et al. (2014)</td>
<td>102</td>
<td></td>
<td>5.5–8.8</td>
</tr>
<tr>
<td>Hirshfeld et al. (2014)</td>
<td></td>
<td></td>
<td>6–9</td>
</tr>
<tr>
<td>Speth et al. (2014)</td>
<td>98</td>
<td></td>
<td>3.0–4.5</td>
</tr>
<tr>
<td>This study</td>
<td>100</td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

Scope of HOF WTW:

- Petroleum refinery linear programming (LP) modeling of producing HOF with different ethanol blending levels
 - Analyze refinery challenges to meet RON and RVP requirements
- WTW analysis of HOF-fueled vehicles with refinery efficiency and vehicle efficiency
WTW Approach

- Petroleum refinery LP modeling for PADDs 2 and 3 (with Jacobs Consultancy)
 - Key fuel spec constraints: RON and Reid Vapor Pressure (RVP)
 - **HOF market share** is a key parameter for refinery LP modeling (from vehicle choice models by NREL)
 - **No new capital investment assumed for refineries**
 - **Gasoline export** is allowed with discount after the US gasoline demands are met

- Crude recovery and ethanol production
 - Canadian oil sands, and cellulosic and corn ethanol production were updated

- Vehicle efficiency gains
 - Baseline regular gasoline (E10, RON 92) fuel economy: 23.6 mpg
 - Two assumptions for HOF MPGGE relative to regular E10:
 - Uniform 5% MPGGE gain based on 100 RON for E10, E25, and E40 (RON is the driver)
 - Fuel parity gain assumption: 10% gain for HOF E40

Diagram

- Updates of **upstream** feedstock
 - Crude Recovery
 - Biomass Farming/Collection

- **Refinery** Analysis for HOF
 - Crude Refining
 - Ethanol Production

- **Vehicle Efficiency** for HOF with E10, E25, and E40 (ORNL)

- **Blending**
 - HOF Combustion

WTW System Boundary
Detailed Refinery LP Modeling Needed for Reliable WTW

- Reliable modeling of complex refinery industry
- Detailed modeling results of refining process units, intermediate products flow rates, utility consumptions, etc.
- To evaluate the energy and emissions burden of individual refinery products
Overall Refinery and Gasoline Blendstock Energy Efficiencies Are Subject to Small Changes with EtOH Blending Level and HOF Share

- **BOB**: Blendstock for Oxygenate Blending; BOB + Ethanol = Finished Gasoline
- **E10 HOF** is feasible only up to ~25% of gasoline market share
 - A result of no new capital investment assumption
- **PADD2** shows similar trends, though with overall lower efficiency
Refining Energy Efficiencies Vary Between Domestic Blendstock and Exported Gasoline

- Domestic BOB efficiency has little change
- Possible spill over of energy penalty from domestic BOB to export gasoline pool
 - Up to 4% drops in export gasoline refining efficiency from the baseline (non-HOF) case
 - Up to 2.5 g CO2e/MJ increases in export gasoline’s GHG emissions from the baseline
- But combined change is small with allocated to HOF (<1 gCO₂e/MJ HOF)
Larger WTW GHG emissions in PADD2 is due to a larger share of GHG-intensive oil sands
Adjustment for the spill over is 0.2 gCO₂e/MJ of HOF on average (up to 0.8 gCO₂e)
Baseline BOB is Business-As-Usual
- Market shares of different gasoline types: 92% of regular E10 and 8% of premium E10
Finished HOF: Higher Ethanol Blending Level Contributes to Lower WTW GHG Emissions of HOF (per unit of **energy** results, PADD3)

- Corn stover ethanol is used as a surrogate for cellulosic ethanol
Vehicle Fuel Economy Gains Provide Additional WTW GHG Emissions Reductions (per mile results, PADD3)

- E10, E25 and E40 HOF → 5% MPGGE gain (volumetric fuel parity at E25)
- E40 HOF Maximum → 10% MPGGE gain (volumetric fuel parity at E40)
Cellulosic E25 and E40 HOF Can Reduce GHG Emissions by Up to 17% and 31% Relative to Baseline Gasoline, Respectively (based on per mile results)

- GHG reduction w/ vehicle efficiency gain: 5% with 5% MPGGE gain, 9% with 10% MPGGE gain
- Refinery GHG Impact: <1% (small)
- Ethanol Blending GHG Impact
 - Corn Ethanol: 0% for E10, 4% for E25, 9% for E40
 - Corn Stover Ethanol: 3% for E10, 12% for E25, 23% for E40
WTW Conclusions

- Vehicle efficiency gains and ethanol blending are the two dominant factors for WTW GHG emissions reduction.

- Impacts of HOF production on refinery GHG emissions is relatively small.

- Ethanol can be a major enabler in producing HOF with significant vehicle efficiency gains and a large reduction in WTW GHG emissions.
Summary

- Ethanol blended at 25 to 40% provides high octane number and fuel/air charge cooling
 - E25 to E40 can be used in over 17M FFVs currently deployed
- HOF enables production of more efficient, optimized vehicles
- Biofuel production and vehicle adoption models suggest potential HOF consumption of up to 30 billion gallons ethanol in 2035
- WTW GHG emission reductions range from 9-18% for corn ethanol HOF and 17-31% for cellulosic ethanol HOF
- There are challenges to introduction of ethanol HOF
 - Underground storage tanks are likely compatible
 - Fuel dispensing equipment will require upgrading
 - Challenges of developing supply and demand in concert