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Motivation for HOF WTW: Addressing Tradeoff Between 

Vehicle Efficiency Gain and HOF Production Penalty
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Reference RON

Efficiency Gain (%)

CommentEngine Vehicle

Nakata et al. 

(2007)
100 7.4

Constant load,

Compression ratio = 13

Leone et al. (2014) 102 5.5–8.8 Compression ratio = 13

Hirshfeld et al. 

(2014)
6–9 Compression ratio =13

Speth et al. (2014) 98 3.0–4.5

This study 100 5
We considered 10% for 

E40 as a sensitivity case

Scope of HOF WTW:
 Petroleum refinery linear programming (LP) modeling of producing HOF 

with different ethanol blending levels
 Analyze refinery challenges to meet RON and RVP requirements

 WTW analysis of HOF-fueled vehicles with refinery efficiency and vehicle 
efficiency



WTW Approach
 Petroleum refinery LP modeling for PADDs 2 and 3 (with Jacobs Consultancy)

– Key fuel spec constraints: RON and Reid Vapor Pressure (RVP)

– HOF market share is a key parameter for refinery LP modeling (from vehicle choice models by 
NREL)

– No new capital investment assumed for refineries

– Gasoline export is allowed with discount after the US gasoline demands are met

 Crude recovery and ethanol production
– Canadian oil sands, and cellulosic and corn ethanol production were updated

 Vehicle efficiency gains
– Baseline regular gasoline (E10, RON 92) fuel economy: 23.6 mpg

– Two assumptions for HOF MPGGE relative to regular E10:

• Uniform 5% MPGGE gain based on 100 RON for E10, E25, and E40 (RON is the driver)

• Fuel parity gain assumption: 10% gain for HOF E40
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Detailed Refinery LP Modeling Needed for Reliable WTW

 Reliable modeling of complex refinery industry

 Detailed modeling results of refining process units, intermediate 
products flow rates, utility consumptions, etc.

To evaluate the energy and emissions burden of individual refinery products
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Overall Refinery and Gasoline Blendstock Energy Efficiencies Are Subject 

to Small Changes with EtOH Blending Level and HOF Share

 BOB: Blendstock for Oxygenate Blending; BOB + Ethanol = Finished Gasoline

 E10 HOF is feasible only up to ~25% of gasoline market share

– A result of no new capital investment assumption

 PADD2 shows similar trends, though with overall lower efficiency



Refining Energy Efficiencies Vary Between Domestic 

Blendstock and Exported Gasoline

 Domestic BOB efficiency has little change 

 Possible spill over of energy penalty from domestic BOB to export gasoline pool

 Up to 4% drops in export gasoline refining efficiency from the baseline (non-HOF) case

 Up to 2.5 g CO2e/MJ increases in export gasoline’s GHG emissions from the baseline

 But combined change is small with allocated to HOF (<1 gCO2e/MJ HOF)



HOF Blendstock: GHG Emission Variation of HOF Blendstock 

Component Is Small

 Larger WTW GHG emissions in PADD2 is due to a larger share of GHG-intensive oil sands

 Adjustment for the spill over is 0.2 gCO2e/MJ of HOF on average (up to 0.8 gCO2e)

 Baseline BOB is Business-As-Usual

 Market shares of different gasoline types: 92% of regular E10 and 8% of premium E10



Finished HOF: Higher Ethanol Blending Level 

Contributes to Lower WTW GHG Emissions of HOF

(per unit of energy results, PADD3)

 Corn stover ethanol is used as a surrogate for cellulosic ethanol



Vehicle Fuel Economy Gains Provide Additional WTW GHG 

Emissions Reductions (per mile results, PADD3)

 E10, E25 and E40 HOF  5% MPGGE gain (volumetric fuel parity at E25)

 E40 HOF Maximum  10% MPGGE gain (volumetric fuel parity at E40)



Cellulosic E25 and E40 HOF Can Reduce GHG Emissions by Up to 17% and 

31% Relative to Baseline Gasoline, Respectively (based on per mile results)

 GHG reduction w/ vehicle efficiency gain: 5% with 5% MPGGE gain, 9% with 10% MPGGE gain

 Refinery GHG Impact: <1% (small)

 Ethanol Blending GHG Impact
– Corn Ethanol: 0% for E10, 4% for E25, 9% for E40

– Corn Stover Ethanol: 3% for E10, 12% for E25, 23% for E40

(Only for HOF E40)



WTW Conclusions

 Vehicle efficiency gains and ethanol blending are the two 
dominant factors for WTW GHG emissions reduction

 Impacts of HOF production on refinery GHG emissions is 
relatively small

 Ethanol can be a major enabler in producing HOF with 
significant vehicle efficiency gains and a large reduction in 
WTW GHG emissions 
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Summary

• Ethanol blended at 25 to 40% provides high octane number and 
fuel/air charge cooling

• E25 to E40 can be used in over 17M FFVs currently deployed

• HOF enables production of more efficient, optimized vehicles

• Biofuel production and vehicle adoption models suggest potential 
HOF consumption of up to 30 billion gallons ethanol in 2035

• WTW GHG emission reductions range from 9-18% for corn ethanol 
HOF and 17-31% for cellulosic ethanol HOF

• There are challenges to introduction of ethanol HOF

• Underground storage tanks are likely compatible

• Fuel dispensing equipment will require upgrading

• Challenges of developing supply and demand in concert


