

Life-Cycle Greenhouse Gas Emissions of Corn Ethanol with the GREET Model

Michael Wang Systems Assessment Group Energy Systems Division Argonne National Laboratory

EESI Congressional Briefing September 18, 2014 Washington, DC

GREET includes more than 100 fuel production pathways from various energy feedstock sources

Life-Cycle Analysis System Boundary: Corn to Ethanol

Trend of 35 Studies in the Past 35 Years: Energy Use in U.S. Corn Ethanol Plants Has Decreased Significantly

Fertilizer Use in U.S. Corn Farming Has Reduced Significantly in the Past 40 Years

GHG Emission Sources for Corn Ethanol

Corn Ethanol: 60 g CO2e/MJ (DGS Credit: -13)

From Wang et al. (2012), Environ. Research Letters

Carbon Calculator for Land-Use Change from Biofuels Production (CCLUB) in GREET

Estimates of LUC GHG emissions for corn-to-ethanol pathway

LCA GHG emissions of gasoline and bioethanol pathways

From Wang M., et al., (2012), Environ. Research Letters

Biofuels achieve positive fossil energy balance

Biofuel energy balance = energy output - fossil energy input Biofuel energy ratio = energy output/fossil energy input

		Sugar-	Corn	Switch-	
	Corn	cane	Stover	grass	Miscanthus
Energy balance:					
MJ/liter ^a	10.1	16.4	20.4	21.0	21.4
Energy ratio	1.61	4.32	4.77	5.44	6.01

^a A liter of ethanol contains 21.3 MJ of energy (lower heating value). Values close to or greater than 21.3 MJ are caused by co-produced electricity

New trends of ethanol production

Corn oil extraction for biodiesel production

Co-production of corn grain ethanol and stover ethanol

Life-Cycle Analysis system boundary: petroleum to gasoline

Argonne has been addressing petroleum fuel pathways

- Petroleum refining to gasoline, diesel, jet fuel, and others with LP modeling to address refinery efficiency and emissions
 - Two journal articles document findings
- Oil sands production
 - Energy use and GHG emissions of recovery activities (with Stanford U.)
 - Land disturbance GHG emissions (with UC Davis)
- Other crude types being analyzed
 - Light crude recovery in Bakken and Eagle Ford Plays

Petroleum product energy efficiencies based on simulations of 43 US refineries

From Elgowainy et al. (2014), Environ. Science and Tech.

Gasoline greenhouse gas emissions simulated in GREET: grams/MJ

25 oil sands projects were analyzed for their emissions and land disturbance

				River Bircl	860 m
	Mining + SCO (58%)	Mining + Bitumen (4%)	In-Situ + SCO (6%)	In-Situ + Bitumen (32%)	Horizon Mine Aurora North
GREET2013					
Recovery	14.9		18.0		Mildred Lake Mackay River
Refining	12.7		12.9		Millennium, Steepbank & Voyageur
T&D	4.1		4.1		Fort McMurray
Land Disturbance	NE		NE		River
Total	31.7		35.0		Apart 2 1 1 1 1 2 1 2 1
GREET2014 Upda	ite				Long Lake
Recovery	24.1	8.1	34.5	20.3	
Refining	11.1	17.0	11.6	18.1	746 m
T&D	4.1	4.0	4.2	4.1	As a company and a company
Land Disturbance	1.9	1.9	0.7	0.7	ct
Total	41.2	31.0	51.0	43.2	Christina Lake Regional Project Christina Lake

- NE not estimated
- Refining GHG emissions for GREET2014 are estimated by assuming API gravity of 32 for SCO and 21 for bitumen
- Combustion GHG emissions are 73.3 g/MJ for gasoline and 75.0 g/MJ for diesel

Conclusions

- Technology improvements in ethanol production and corn farming have helped reduce corn ethanol GHG emissions
- Land use change modeling for corn ethanol has improved in the past 6 years with reduced modeled LUC GHG emissions, but uncertainties and confusions remain and debate continues
- Transition to cellulosic biofuels will result in greater GHG reductions

Additional Information:

greet.es.anl.gov

mqwang@anl.gov 630-252-2819