Life-Cycle Greenhouse Gas Emissions of Corn Ethanol with the GREET Model

Michael Wang
Systems Assessment Group
Energy Systems Division
Argonne National Laboratory

EESI Congressional Briefing
September 18, 2014
Washington, DC
GREET includes more than 100 fuel production pathways from various energy feedstock sources

Feedstock

Petroleum
- Conventional
- Oil Sands

Coal

Natural Gas
- North American
- Non-North American
- Shale gas

Renewable Natural Gas
- Landfill Gas
- Animal Waste
- Waste water treatment
- Coke Oven Gas
- Petroleum Coke
- Nuclear Energy

Fuel

Petroleum
- Gasoline
- Diesel
- Jet Fuel
- Liquefied Petroleum Gas
- Naphtha
- Residual Oil

Coal

Natural Gas
- Compressed Natural Gas
- Liquefied Natural Gas
- Liquefied Petroleum Gas
- Methanol
- Dimethyl Ether
- Hydrogen

Renewable Natural Gas
- Fischer-Tropsch Diesel
- Fischer-Tropsch Jet
- Methanol
- Dimethyl Ether
- Fischer-Tropsch Diesel
- Fischer-Tropsch Jet
- Fischer-Tropsch Naphtha
- Hydrogen

Cellulosic Biomass
- Switchgrass
- Willow/Poplar
- Crop Residues
- Forest Residues
- Miscanthus

Feedstock

Corn

Sugarcane

Soybeans
- Palm
- Rapeseed
- Jatropha
- Camelina
- Algae

Cellulosic Biomass

Residual Oil

Coal

Natural Gas

Biodiesel

Renewable Diesel

Renewable Gasoline

Hydroprocessed Renewable Jet

Electricity

Renewable Natural Gas

Landfill Gas

Animal Waste

Waste water treatment

Coke Oven Gas

Petroleum Coke

Nuclear Energy

Renewables

Ethanol

Butanol

Biodiesel

Renewable Diesel

Renewable Gasoline

Hydroprocessed Renewable Jet
Life-Cycle Analysis System Boundary: Corn to Ethanol
Trend of 35 Studies in the Past 35 Years: Energy Use in U.S. Corn Ethanol Plants Has Decreased Significantly

Historical Ethanol Plant Energy Use: Btu/Gallon

Dry Mill
Wet Mill
Average
Fertilizer Use in U.S. Corn Farming Has Reduced Significantly in the Past 40 Years
GHG Emission Sources for Corn Ethanol

Corn Ethanol: 60 g CO2e/MJ
(DGS Credit: -13)

From Wang et al. (2012), *Environ. Research Letters*
Carbon Calculator for Land-Use Change from Biofuels Production (CCLUB) in GREET

Amount and type of land use change (from GTAP etc.)

Soil carbon change (from CENTURY etc.)

Original Land Types
- Forest (including YF-Shrub), Grassland, Cropland-Pastureland

Land Management Options
- Conventional Till
- Reduced Till
- No Till

Feedstock Options
- Corn Grain
- Corn Grain and Stover
- Switchgrass
- Miscanthus
Estimates of LUC GHG emissions for corn-to-ethanol pathway

Critical factors for LUC GHG emissions:
- Economic models are used for global simulations
- Crop yields: exist cropland vs. new cropland; global yield differences and potentials
- Available land types: cropland, grassland, forestland, wetland, etc.
- Price elasticities
 - Crop yield response to price
 - Food demand response to price
- Animal feed modeling
- Soil organic carbon changes from land conversions
LCA GHG emissions of gasoline and bioethanol pathways

Biofuels achieve positive fossil energy balance

Biofuel energy balance = energy output - fossil energy input
Biofuel energy ratio = energy output/fossil energy input

<table>
<thead>
<tr>
<th></th>
<th>Corn</th>
<th>Sugar-cane</th>
<th>Corn Stover</th>
<th>Switch-grass</th>
<th>Miscanthus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy balance:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MJ/liter(^a)</td>
<td>10.1</td>
<td>16.4</td>
<td>20.4</td>
<td>21.0</td>
<td>21.4</td>
</tr>
<tr>
<td>Energy ratio</td>
<td>1.61</td>
<td>4.32</td>
<td>4.77</td>
<td>5.44</td>
<td>6.01</td>
</tr>
</tbody>
</table>

\(^a\) A liter of ethanol contains 21.3 MJ of energy (lower heating value). Values close to or greater than 21.3 MJ are caused by co-produced electricity.
New trends of ethanol production

Corn oil extraction for biodiesel production

Co-production of corn grain ethanol and stover ethanol
Life-Cycle Analysis system boundary: petroleum to gasoline
Argonne has been addressing petroleum fuel pathways

- Petroleum refining to gasoline, diesel, jet fuel, and others with LP modeling to address refinery efficiency and emissions
 - Two journal articles document findings

- Oil sands production
 - Energy use and GHG emissions of recovery activities (with Stanford U.)
 - Land disturbance GHG emissions (with UC Davis)

- Other crude types being analyzed
 - Light crude recovery in Bakken and Eagle Ford Plays
Petroleum product energy efficiencies based on simulations of 43 US refineries

Gasoline greenhouse gas emissions simulated in GREET: grams/MJ
25 oil sands projects were analyzed for their emissions and land disturbance

<table>
<thead>
<tr>
<th></th>
<th>Mining + SCO (58%)</th>
<th>Mining + Bitumen (4%)</th>
<th>In-Situ + SCO (6%)</th>
<th>In-Situ + Bitumen (32%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GREET2013</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recovery</td>
<td>14.9</td>
<td>18.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Refining</td>
<td>12.7</td>
<td></td>
<td>12.9</td>
<td></td>
</tr>
<tr>
<td>T&D</td>
<td>4.1</td>
<td></td>
<td>4.1</td>
<td></td>
</tr>
<tr>
<td>Land Disturbance</td>
<td>NE</td>
<td></td>
<td>NE</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>31.7</td>
<td>35.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GREET2014 Update</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recovery</td>
<td>24.1</td>
<td>8.1</td>
<td>34.5</td>
<td>20.3</td>
</tr>
<tr>
<td>Refining</td>
<td>11.1</td>
<td>17.0</td>
<td>11.6</td>
<td>18.1</td>
</tr>
<tr>
<td>T&D</td>
<td>4.1</td>
<td>4.0</td>
<td>4.2</td>
<td>4.1</td>
</tr>
<tr>
<td>Land Disturbance</td>
<td>1.9</td>
<td>1.9</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>Total</td>
<td>41.2</td>
<td>31.0</td>
<td>51.0</td>
<td>43.2</td>
</tr>
</tbody>
</table>

- NE – not estimated
- Refining GHG emissions for GREET2014 are estimated by assuming API gravity of 32 for SCO and 21 for bitumen
- Combustion GHG emissions are 73.3 g/MJ for gasoline and 75.0 g/MJ for diesel

Based on Englander and Brandt (2014) and Yeh et al. (2014)
Conclusions

- Technology improvements in ethanol production and corn farming have helped reduce corn ethanol GHG emissions.
- Land use change modeling for corn ethanol has improved in the past 6 years with reduced modeled LUC GHG emissions, but uncertainties and confusions remain and debate continues.
- Transition to cellulosic biofuels will result in greater GHG reductions.
Additional Information:

greet.es.anl.gov

mqwang@anl.gov

630-252-2819