Decommissioning and Radwaste Transportation

EESI Congressional Briefing Rm 2318 Rayburn Bldg May 13, 2019

Marvin Resnikoff, Ph.D. Radioactive Waste Management Associates

PWR Fuel Assembly

Spent Fuel Pool

Cs-137 Quantity as Hiroshima Release

PWR	High Burnup (60 GWd/MTU)	Medium Burnup (40 GWd/MTU)
24 PWR cask	662	445
37 PWR cask	1020	686

Hiroshima Cs-137 release: 89 teraBq, 2405 Ci

Empty Canister Installed in HI-TRAC

Canister Fuel Loading

LOWER THE CANISTER INTO CONCRETE CASK

MOVE CONCRETE CASK ONTO PAD

Figure II.10: HI-STORM Lifted from the top using the Vertical Cask Crawler

CHIMNEY EFFECT COOLING

CT Yankee Dry Storage

San Onofre NUHOMS

San Onofre Dry Storage Cask System

Irradiation/Storage Conditions for PWR Fuel

Category	Reactor	Pool	Dry Strge
ID Clad T	340-370	30-60	360
Water T	300-330	20-50	
In Rod Pressure	38-150		38-150
Coolant Pressure	140-160	2	1

Nuclear Power Plants in the United States

Representative Transportation Routes

Operating Nuclear Power Plant

•

This map depicts the state-specific impacts (number of casks) and route maps evaluated in the 2008 U.S. Department of Energy (DOE) Final Supplemental Environmental Impact Statement for Yucca Mountain (DOE/EIS-0250-F), Appendix G, Section G.10.

The number in each state shows the combined rail and truck high-level nuclear waste cask shipments that DOE estimated would traverse each state en route to Yucca Mountain.

TransportationSystem (2008 SEIS)

- 21,909 rail casks (about 6,700 trains) & 5,025 truck casks [p.8-41]
- Average 1-3 trains (3-5 casks per train) & 1-2 trucks (1 cask per truck) per week for 50 years
- Every day, for 50 years, one or more loaded casks on rail or road, from 76 shipping sites to a single national repository or storage site

TRANSPORTATION ISSUES

- NRC hypothetical accident conditions (impact, fire)
- Cask tested by computer simulation, not physical
- Changed rail conditions (tank cars from North Dakota vs. oil pipeline)
- DOE EIS (size cask: 21 vs. 37 PWR fuel assemblies)
- Rail preferred, but Indian Point, CT Yankee, Yankee Rowe and others may require heavy haul transport or barge

Heavy Haul Truck Configuration

220 feet

Regulatory Drop Test

Potential Side Impact

Seals Damage in Fire

No Impact Limiter

for seal failure

FIRE/FRTRN MI

The train rolled downhill for seven miles (11km) before derailing at Lac-Megantic

Flame Temperatures

Chemical	Flame Temperature (°F)
Acetone	2160-7072
Diesel	1740-1839
Propane	2242-6487
Vinyl Chloride	2552-11,142

Cesium in Gap

<u>Study</u>	Cs in Gap
Modal	0.3%
Gray	9.9%

High Burnup Fuel

- Previously, every year 1/3 reactor core removed. Fuel burnup to 35 GWd/MTU
- More recently, fuel in reactor longer, now up to 72 GWd/MTU.
- For fission products like Cs-137 and Sr-90, transportation cask inventory is proportional, 72/35 = 2.06
- While buildup of fission products is roughly proportional to burnup, buildup of higher actinides like Pu, Am and Cm is greater. The subsequent decay of Pu-241 (14 yr half-life) with beta emission leads to buildup of Am-241 (432 year half-life) which has an alpha decay, accounting for greater heat production up to year 70 after fuel removal, then decline. This is not taken into account by the NRC.

Figure 5-1. The time variation of ²⁴¹Pu and ²⁴¹Am over a 200 year time span.

High Burnup Fuel (continued)

- This increased heat production means cask must remain at reactor longer before shipping, at least 40 years (if CoC remains the same).
- In 2008 FSEIS for Yucca Mountain, cask contained 21 PWR fuel assemblies. Now Holtec's HI-STAR 190 contains 37 PWR fuel assemblies. With HBF, the new inventory of Cs-137 and Sr-90 can be 3.63 as much. This is important for accident analysis.
- Cladding can be more brittle and 15% thinner. Vibrations on rail may cause major degradation.