energy [r]evolution

A Sustainable World Energy Outlook

Wolfram Krewitt
It is not important to predict future, but it is important to be prepared for the future.

Perikles, 500 B.C.
Projection of technology development and socio-economic change

Forecasting

‘business-as-usual’ future world

Alternative policy options

required interventions and investments

Backcasting

Normative target world

source: anonymous
EU target: to limit average global temperature increase to a maximum of 2°C compared to pre-industrial level.

- Stabilisation of global CO$_2$-concentration below 450 ppm
- reduce energy related CO$_2$-emissions from 27 Gt/a today to ~ 10 Gt$_{CO_2}$/a in 2050
- per-capita emission rights in 2050: ~ 1 t$_{CO_2}$/a
a sustainable world energy outlook: the energy [r]evolution scenario

key targets:

- climate change: limit global mean temperature rise to less than 2° C
- phasing out of nuclear energy on a global level
- incentives for sustainable economic development
10 world regions
population development
GDP development projection

average annual GDP growth rates in %

OECD Europe
OECD North America
OECD Pacific
Trans. Economies
China
East Asia
South Asia
Latin America
Africa
Middle East
World

2003-2020
2020-2040
2040-2050
development of global final energy demand

‘Business as Usual’ – extrapolation based on IEA-WEO 2004 Reference Scenario
increase in global energy productivity by factor 4
global final energy demand by sector

Reference Scenario

energy [r]evolution Scenario
final energy demand: China

Reference Scenario

energy [r]evolution Scenario
final energy demand: OECD North America

Reference Scenario

energy [r]evolution Scenario
a broad range of renewable energy technology options is available

- **PV** – boosting global markets, high innovation potential

- **Ocean energy** – variety of successful demo projects in place, huge potentials

- **Concentrating solar thermal power** – new incentives triggered market in Spain, base load RES electricity

- **Solar heating** – high solar shares achievable with district heating networks & seasonal storage

- **Off-shore wind** – large scale commercialisation about to start

- **Biomass** – efficient combined heat and power production
potential of CO₂ reduction by CCS technologies
(example: coal IGCC)

\[\eta: \text{50\%} \rightarrow \text{42\%} \quad \text{transp.} \quad \text{storage} \quad \text{88\% CO₂ capture} \]

-78% gas fired CC-CHP
OECO North America 2°C Scenario

1) with heat credit
global electricity supply – 2° Scenario

Y-Axis: TWh/a

X-Axis: Years 2003-2050

Energy sources: Efficiency, Ocean Energy, Solar Thermal, PV, Geothermal, Wind, Hydro, Biomass, CHP fossil, Gas&oil, Coal, Nuclear

Legend:
- Efficiency
- Ocean Energy
- Solar Thermal
- PV
- Geothermal
- Wind
- Hydro
- Biomass
- CHP fossil
- Gas&oil
- Coal
- Nuclear
future electricity supply structure - China

Reference Scenario

energy [r]evolution Scenario

- Efficiency
- Import RES
- Ocean Energy
- Solar Thermal
- PV
- Geothermal
- Wind
- Hydro
- Biomass
- CHP fossil
- Gas&oil
- Coal
- Nuclear
global primary energy demand

- Efficiency
- Ocean energy
- Geothermal
- Solar
- Biomass
- Wind
- Hydro
- Natural gas
- Crude oil
- Coal
- Lignite
- Nuclear

Graph showing the energy demand from 2003 to 2050 in PJ/a.
global primary energy demand

- 50% energy savings compared to ‘business-as-usual’
- 50% renewables
costs of global electricity supply

<table>
<thead>
<tr>
<th>crude oil $^{2000}/bbl</th>
<th>62</th>
<th>75</th>
<th>85</th>
<th>93</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂ $/t</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>50</td>
</tr>
</tbody>
</table>

![Graph showing costs of global electricity supply](image)
costs of global electricity supply

<table>
<thead>
<tr>
<th>crude oil $_{2000}/bbl</th>
<th>62</th>
<th>75</th>
<th>85</th>
<th>93</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO$_2$ $/t$</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>50</td>
</tr>
</tbody>
</table>

- energy [r]evolution Scenario - efficiency measures
- energy [r]evolution Scenario - electricity generation
- Reference - electricity generation
global investment in renewable electricity technologies – energy [r]evolution scenario

- geothermal, ocean energy
- concentrating solar thermal
- PV
- biomass
- wind
- hydro

billion $ per year

<table>
<thead>
<tr>
<th>Year</th>
<th>2003</th>
<th>2020</th>
<th>2030</th>
<th>2040</th>
<th>2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>50</td>
<td>150</td>
<td>250</td>
<td>350</td>
<td>450</td>
</tr>
</tbody>
</table>
Discussion

- achieving the 2°C target is technically feasible
- societal and structural innovation is required to facilitate the transformation process
- exploitation of energy efficiency potentials is a huge challenge
- adaptation of energy supply infrastructure
- investment in renewable energy technologies offers industrial development options
- current ‘real world’-trends deviate from 2°C-Scenario → strong policy action is required!
- use a target oriented scenario as a policy benchmark!
electricity supply OECD North America
Energy savings per measure in 2050

- Increase secondary aluminium
- Efficient cooling equipment
- Iron and steel - electricity
- Reduce stand-by losses
- Efficient buses
- Improved process control
- Membrane product separation
- Iron and steel - fuels
- Reduce electricity use during non-office hours
- Efficient motor systems
- Efficient electric appliances
- Efficient lighting
- Heat integration / pinch analysis
- Agriculture
- Efficient freight vehicles
- Efficient passenger cars (hybrid fuel cars)
- Improved heat insulation
- Improved energy-efficiency other industries