Scaling Up-Direct Air Capture (DAC): Learnings From Traditional Capture Projects

Kevin C. OBrien, PhD
Director, Illinois Sustainable Technology Center
Director, Illinois State Water Survey

Briefing Panel: Environmental and Energy Study Institute
May 25, 2022
Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
Skilled in transitioning from lab scale to build/operate scale

UNIVERSITY OF ILLINOIS / PRI: LEADER IN CAPTURE R&D
Prairie Research Institute (PRI): Addressing Societal Issues
UIUC / PRI Network

Multi-organizational team is required

- Relationships and access to host sites in the region / US
- Network of Engineering Procurement and Construction (EPC) firms, OEMs, etc.
- Infrastructure in place (financial, project management, etc.) to meet US Department of Energy (DOE) requirements
- Typically functions as “prime” for projects
- “Agnostic” approach to technology, i.e. willing to work with any technology as long as it works
Pathway to Scaling-Up Capture Technologies

Traditional Capture Provides Good Lessons Learned for DAC scale-up

Feasibility
- Is it economical?
- Any regulatory barriers?
- Any technical barriers?

PreFEED
- Basic design
- Detailed design
- Regulatory resolved
- Financing complete
- Ready for construction, i.e. “shovel ready”

FEED
- FEED = Front-End Engineering and Design

Build / Operate
- “Breaking ground”

Notes:
- FEED = Front-End Engineering and Design
UIUC Project Portfolio

Color code: Complete / In Process

<table>
<thead>
<tr>
<th>Lab</th>
<th>Small Pilot</th>
<th>Large Pilot / Full Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Next generation DAC materials</td>
<td>0.5 MW Capture w/Mixed Salts</td>
<td>816 MW capture plant (largest capture FEED in the world)</td>
</tr>
<tr>
<td></td>
<td>40 kW – Biphasic Capture System</td>
<td>10 MW – Build / Operate (largest capture pilot in the world)</td>
</tr>
<tr>
<td>0.5 MW aerosol reduction technologies</td>
<td>350 MW – Capture, energy storage, algae, hybrid coal/NG</td>
<td></td>
</tr>
<tr>
<td>FGD blown-down water recycle</td>
<td>1 MW- Build/operate Utilize CO2 from flue gas for algae growth</td>
<td></td>
</tr>
<tr>
<td>Capture from Cement Plant (largest single kiln in North America)</td>
<td>Direct Air Capture (DAC) + renewables 100,000 tCO2/yr, 3 sites</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Direct Air Capture (DAC) + geothermal 5,000 tCO2/yr.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Direct Air Capture (DAC) + nuclear 5,000 tCO2/yr.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DAC + excess heat from steel plant+ utilization of CO2 for cement applications (DACU) 5,000 tCO2/yr.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>400 MWh energy storage using NG</td>
<td></td>
</tr>
</tbody>
</table>
Scale-up studies and considerations

DIRECT AIR CAPTURE (DAC)
Some Engineering Scale-Up Considerations

Post combustion vs DAC

- Capture unit located before stack
- Heat / power from plant drives capture unit
- Capture CO₂ from flue gas
- CO₂ levels ~11% in flue gas
- Residuals could be present: NOx, SOx, etc.
- Industrial > 100,000; power generation >1,000,000 tCO₂/yr. captured

- Capture unit location flexible
- Heat / power can be from multiple sources
- Capture CO₂ from atmosphere
- CO₂ levels in ppm range
- Residuals seen in post combustion not present
Direct Air Capture-Based Carbon Dioxide Removal with Low-Carbon Energy and Sinks

US Department of Energy (DOE) Funded Project

Goals:
- Initial engineering design for system that captures 100,000 tCO₂/yr.
- Evaluate effect of various climates within the US on engineering design for three sites
- Estimate cost and timeline for construction of facility
- Technoeconomics, Life Cycle Analysis, and Business Case at all three host sites

Total Project Funding: $3.1 MM
Project Duration: 18 months

Louisiana California Wyoming
Effect of Power Source and Climate on DAC Design

Evaluates impact of various factors on scale-up

<table>
<thead>
<tr>
<th>Site Location</th>
<th>Volume CO₂ Captured (tCO₂/yr.)</th>
<th>Power Source</th>
<th>Existing vs New Power Source</th>
<th>Operator</th>
<th>Climate</th>
<th>Storage Site</th>
<th>Transport to Storage Site</th>
</tr>
</thead>
<tbody>
<tr>
<td>Louisiana</td>
<td>100,000</td>
<td>Solar (SunPower)</td>
<td>New</td>
<td>Gulf Coast Sequestration</td>
<td>Hot & Humid</td>
<td>Deep Subsurface Rock</td>
<td>Co-located with DAC</td>
</tr>
<tr>
<td>California</td>
<td>100,000</td>
<td>Geothermal</td>
<td>Existing</td>
<td>Ormat</td>
<td>Hot & Dry</td>
<td>Saline Aquifer</td>
<td>Rail / Pipeline</td>
</tr>
<tr>
<td>Wyoming</td>
<td>100,000</td>
<td>Waste Heat (Gas plant) & Wind</td>
<td>Existing</td>
<td>North Shore Exploration & Production, LLC</td>
<td>Warm & Dry / Cold & Dry</td>
<td>Depleted Oil & Gas Reservoir</td>
<td>Co-located with DAC</td>
</tr>
</tbody>
</table>
Direct Air Capture + Utilization = DACU

Waste heat from Steel plant and utilize captured CO₂ for cement

US Steel Gary Works Facility Host Site Aerial View

Waste Heat

Captured CO₂

CO₂ incorporated into cement

5,000 tCO₂/yr.

Total Project Funding: $ 3.5 MM
Project duration: 18 months
Strategies / Tools to Assist in DAC Scale-up

Many under development by NETL / DOE

• Use FEED study results to drive R&D funding
 – Uncover the technology “gaps” that inhibit scale-up

• Build pilot scale systems to accelerate learnings
 – Building systems has demonstrated for many energy technologies the ability to transition on the “learning curves”

• Technoeconomic Analysis (TEA) standards for DAC
 – Patterned after those established for Post Combustion Capture

• Standardized scale-up pathway
 – Equivalent for post combustion: bench-scale / lab-scale / small pilot / large pilot / demonstration

1 Edward S. Rubin; Margaret R. Taylor; Sonia Yeh; David A. Hounshell, Learning curves for environmental technology and their importance for climate policy analysis, Energy 29 (2004) 1551-1559
3 COST AND PERFORMANCE BASELINE FOR FOSSIL ENERGY PLANTS VOLUME 1: BITUMINOUS COAL AND NATURAL GAS TO ELECTRICITY (Sept. 2019, NETL-PUB-22638)
Acknowledgements

<table>
<thead>
<tr>
<th>Organization</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Krista Hill</td>
<td>National Energy Technology Laboratory / US Department of Energy</td>
</tr>
<tr>
<td>Dirk Nuber, Daniel Sutter, Karina Veloso</td>
<td>Climeworks</td>
</tr>
<tr>
<td>Vinod Patel, Jason Dietsch, Chinmoy Baroi</td>
<td>Prairie Research Institute / University of Illinois</td>
</tr>
<tr>
<td>Matt Thomas, Scott Vargo, Bob Sletthaugh</td>
<td>Kiewit</td>
</tr>
<tr>
<td>Steve Swanson</td>
<td>North Shore Energy</td>
</tr>
<tr>
<td>Colin Williams</td>
<td>Gulf Coast Sequestration</td>
</tr>
<tr>
<td>Brian Meichtry</td>
<td>SunPower</td>
</tr>
<tr>
<td>Roger Aines, Bill Bourcier, Joshuah Stolaroff</td>
<td>Lawrence Livermore National Laboratory</td>
</tr>
<tr>
<td>Bob Sullivan</td>
<td>ORMAT</td>
</tr>
<tr>
<td>Mike Whitezell</td>
<td>Sentinel Peak</td>
</tr>
</tbody>
</table>

This project is supported by the U.S. Department of Energy / National Energy Technology Laboratory (DOE/NETL) through Cooperative Agreement No. DE-FE0032100