

ASSESSING IMPACTS OF DAC TO ENABLE RESPONSIBLE SCALING

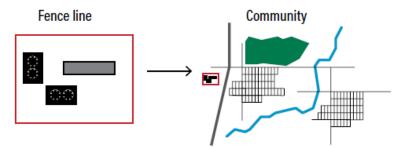
EESI Briefing on Direct Air Capture

May 25, 2022

KATIE LEBLING, WORLD RESOURCES INSTITUTE

WHY FOCUS ON RESPONSIBLE SCALING?

- We will likely need DAC at a large scale
- DAC is a new industry, unfamiliar to most
- Like all infrastructure, need to consider local impacts beyond DAC's needed carbon removal
- To not repeat historical inequities related to infrastructure development



WRI research finds that overall, DAC plants are expected to produce zero or almost zero onsite emissions that could negatively impact human health or the environment

CATEGORIZING IMPACTS

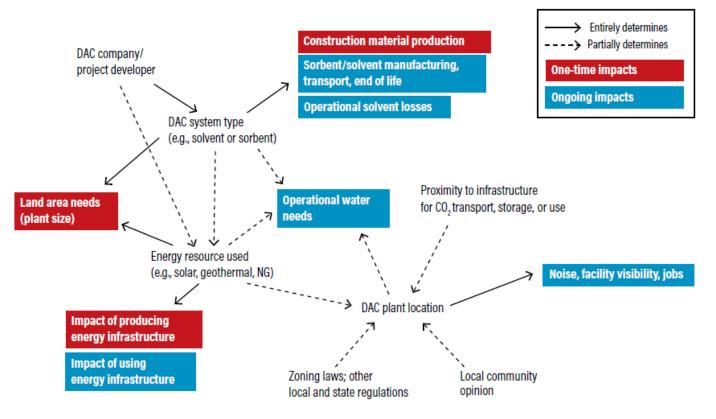
Supply chain

	Local	Distributed
One time: Pre-plant	Construction of plant (one time), construction material production, transport, labor	Production of capture media, production of select construction materials, production of energy infrastructure
Ongoing	Energy usage (fossil), chemical leakage or drift, transport of materials to/from plant, energy production, CO ₂ use-related activities,* management of captured CO ₂ ,* end-treatment of plant materials	Distant supply chain stresses; production of capture media; production of electricity, transport, and management of captured CO ₂ ,* end-treatment of materials*
One time: Post-plant	Decommissioning, destruction, post-site maintenance and remediation, destruction and disposal transport, economic loss, discontinuation of CO ₂ use-related activities,* end-treatment of materials, residual infrastructure, post-management site care	Economic loss, end-treatment of plant materials, residual infrastructure, post-management site care

IMPACTS ARE PROJECT SPECIFIC

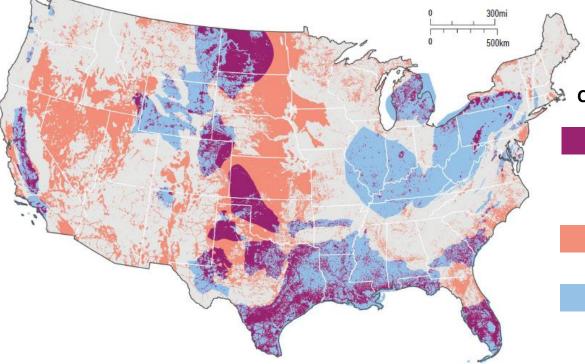
DAC system and energy source	DAC plant (km ²)	Energy source (km ²)	Total for 1 MtCO ₂ /yr scale plant (km ²)
Sorbent: geothermal	0.5	7.0	7.5
Sorbent: solar PV	0.5	34.2	34.7
Sorbent: wind	0.5	65.6	66.0
Sorbent: NG with CCS	0.5	-	0.5
Solvent: NG with CCS + geothermal	0.4	1.5	1.9
Solvent: NG with CCS + solar PV	0.4	7.1	7.5
Solvent: NG with CCS + wind	0.4	13.6	14.0
Solvent: NG with CCS	0.4	-	0.4

Note: Numbers may not add up due to rounding


EXPECTED IMPACTS AT SCALE

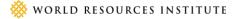
DAC at a half-billion tonne scale would be expected to use:

Resource/ material	Share of	U.S. or global total
Energy	4.4%	U.S. primary energy supply
	3.8%	U.S. projected 2050 energy supply (EIA reference case)
Construction	Up to 3%	U.S. annual cement production (for concrete)
materials	Up to 4%	U.S. annual steel production
	Up to 8%	U.S. annual PVC production
Chemicals	19%	Global annual solvent (KOH) production
	37%	Global annual production of chemicals used in sorbents



IMPACTS ARE INTERCONNECTED

DAC IMPACTS & SITING PROCESSES



Carbon dioxide removal (CDR) systems

<u>Complete CDR system</u>: potential for deployment of energy (solar, wind, geothermal) and geologic sequestration co-located

Incomplete CDR system: potential for deployment of energy only

Incomplete CDR system: potential for deployment of geologic sequestration only

EQUITABLY DISTRIBUTING BENEFITS

- Global benefit: CO₂ removal
- Potential local benefits:
 - High-quality employment opportunities
 - Job training and apprenticeship programs
 - Other local investment tailored to community needs

RECOMMENDATIONS

- Procedural
 - Social impact assessment (SIA)
 - Legal benefit and workforce agreements
- Policy
 - Meaningful community engagement
 - Local labor, local low-carbon materials
 - Encourage use of SIAs and legal agreements with communities

THANK YOU!

Links to: Paper, article, 2-pager

Questions or comments: katie.lebling@wri.org