

Fossil Energy and Carbon Management

Direct Air Capture Opportunities, Challenges, and Role of Policy

Dr. Jennifer Wilcox

PRINCIPAL DEPUTY ASSISTANT SECRETARY FOSSIL ENERGY AND CARBON MANAGEMENT

May 25, 2022

Office of Fossil Energy and Carbon Management

Advancing Carbon Management Approaches Toward Deep Decarbonization

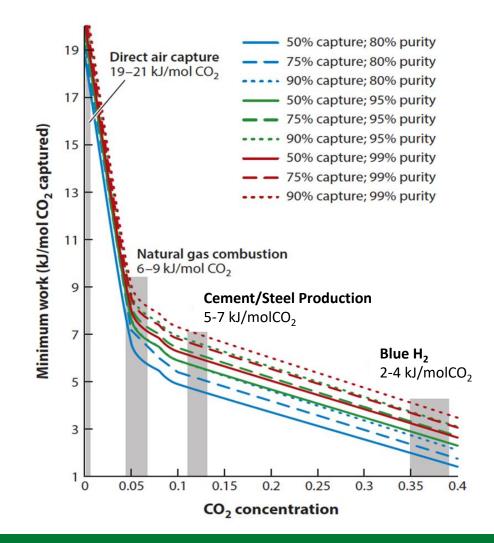
Priorities: Point-source carbon capture, carbon dioxide conversion, carbon dioxide removal (CDR), and reliable carbon transport and storage

Advancing Technologies that Lead to Sustainable Energy Resources

Priorities: Hydrogen with carbon management, domestic critical minerals (CMs) production, and methane mitigation

Advancing Justice, Labor, and Engagement

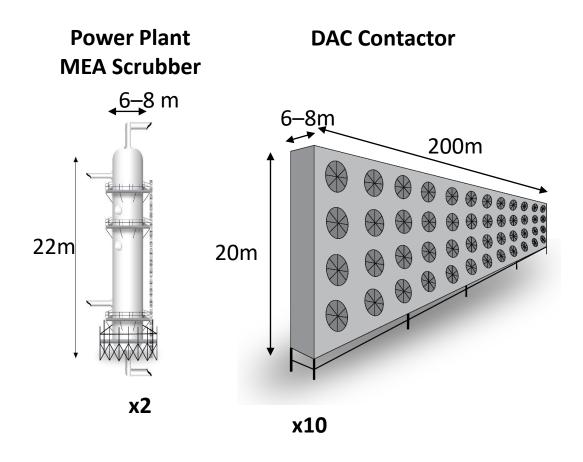
Priorities: Justice, labor, and international and domestic partnerships


STRATEGIC VISION

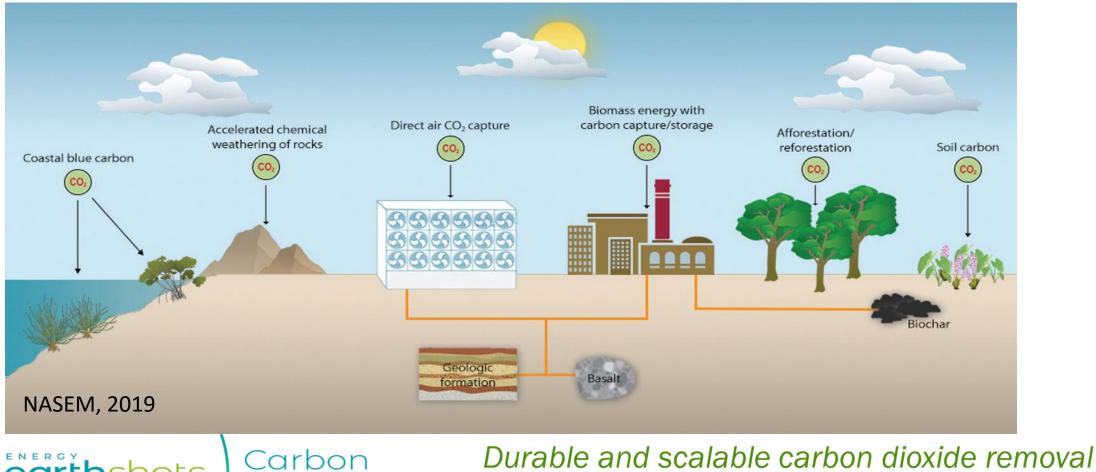
The Role of Fossil Energy and Carbon Management in Achieving Net-Zero Greenhouse Gas Emissions

CCS and CDR Need to Be Done In Parallel

- Minimum work for separation may be derived from combined 1st and 2nd laws of thermodynamics
- Energy scales with dilution > 3× more energy to do DAC vs exhaust streams
- 300× greater contactor area for CO₂ separation to do DAC vs exhaust
- High purity is desired for transport
- Direct air capture should not be seen as a replacement for avoiding carbon



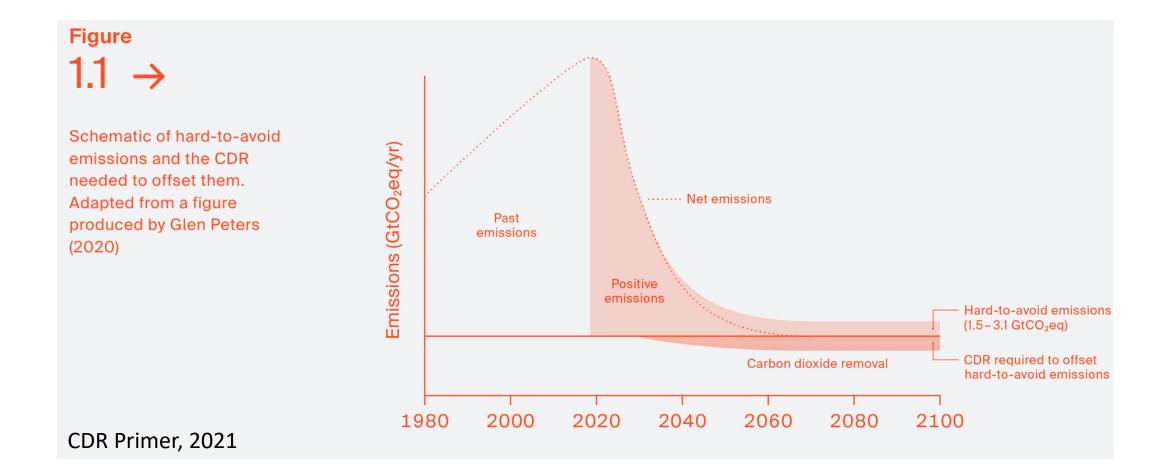
Distinction Between Point-Source Capture and Direct Air Capture


Source: https://grist.org/wp-content/uploads/2021/12/carbon180-carbon-removal-is-not-carbon-capture.png

Different designs and various technologies lead to different impacts, energy, land, and water requirements

Carbon Dioxide Removal and Importance of MRV

under \$100/net metric ton within a decade



Fossil Energy and Carbon Management

Negative

fecm.energy.gov

Net-Zero and Role of Carbon Dioxide Removal

Recent FECM awards focus on coupling DAC to Existing Utilities

- As a leader in advancing carbon management technologies, FECM is researching and investing in DAC technologies to help scale them up for the commercial market
- DAC coupled to durable storage for carbon dioxide removal is energy intensive, relying on both heat and electricity inputs
- FECM recently awarded \$11 million (federal) for 4 FEED studies leveraging existing sources of clean heat for DAC nuclear, geothermal, and industrial waste heat

DAC coupled to nuclear heat: \$3.4m (\$2.5m federal) FEED study led by Battelle with AirCapture, Carbonvert, Sargent & Lundy, Southern Company, and the University of Alabama to be located at Southern Company's Joseph M. Farley nuclear power plant in Columbia, AL. Image: NRC

DAC coupled to nuclear heat and power: \$3.1m (\$2.5m federal) FEED study led by Exelon with Carbon Engineering, Worley Group, 1PointFive, Univ. of Illinois, and PNNL to be located at Exelon's Byron Generating Station for 250k net tons CO_2 /year captured with permanent storage. Image: <u>CE</u>

DAC coupled to geothermal energy: \$3.1m (\$2.5 federal) FEED study led by UIUC with Climeworks, Ormat, Sentinel Peak, Visage Energy, LLNL, and Kiewit to be located at an Ormat geothermal facility in California. Image: <u>Ormat</u>

DAC coupled to steel plant waste heat: \$4.3m (\$3.5m federal) FEED study led by Univ. Illinois to be integrated with US Steel's Gary Works in Indiana, with CO_2 to be trucked to a ready-mix concrete plant to be mineralized into calcium carbonate.Photo: Adobe <u>296734139</u>

fecm.energy.gov

Bipartisan Infrastructure Law

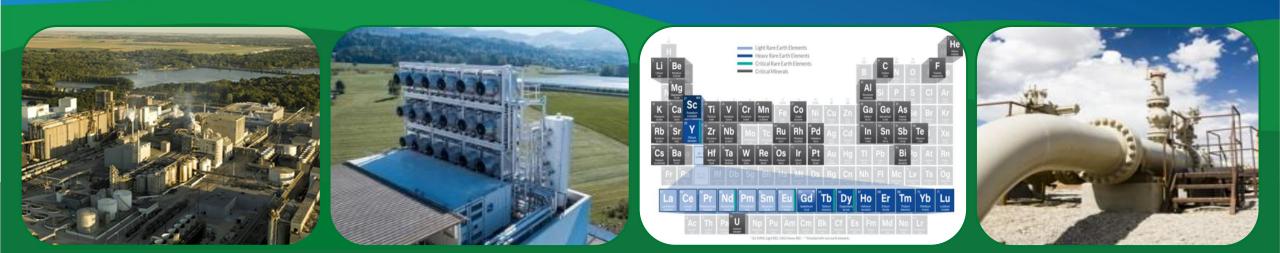
> **\$10 billion** in new carbon management funding over 5 years through the Infrastructure Investment and Jobs Act (Bipartisan Infrastructure Law).

Carbon Dioxide Removal - Direct Air Capture Regional Direct Air Capture Hubs: \$3.5 billion DAC Technology Prize Competition: \$115 million

Carbon Dioxide Utilization and Storage

Carbon Storage Validation and Testing: \$2.5 billion Carbon Utilization Program: \$310 million

Front-End Engineering Design Studies Pipeline Infrastructure: \$100 million


Carbon Dioxide Transportation Infrastructure Loan Programs Office: \$2.1 billion **Carbon Capture Demonstrations and Large Pilots** Integrated Systems: \$3.5 billion

Fossil Energy and Carbon Management

Questions?

