20% Wind Energy by 2030... and the transmission grid required for our carbon constrained future

Rob Gramlich Policy Director American Wind Energy Association

EESI Briefing June 13, 2008

Growth Path to 20% Wind by 2030

Only a fraction of total 350 wind potential would be 18 needed to reach 20%. Cumulative Installed Capacity (GW) 16 300 Annual Installed Capacity (GW) 14 250 Total capacity would grow 12 to nearly **305,000 MW**, or 200 10 an additional 293,000 8 150 MW over the 11,600 MW After ramping up manufacturing capacity. 6 installed at the end of 100 the 20% scenario calls 2006. for over 16 GW to be installed annually. 50 2 Annual installations would 0 2008 2000 increase to over 16,000 MW per year by 2018. ■ Cumulative GW Installed (Left Axis) ■ Annual GW Installed (Right Axis)

Annual and Cumulative Wind Installations by 2030

Wind Resource Supply Curves

Wind Resource Potential in the U.S. 160 Land-Based Offshore Class 7 Class 7 140 Class 6 Class 6 Levelized Cost of Energy, \$/MWh Class 5 Class 5 120 Class 4 Class 4 Class 3 Class 3 100 80 60 40 20 0 200 400 600 800 1,000 Quantity Available, GW

Once existing transmission availability of 10% and integration costs are included, over 600 GW of wind is still available at competitive levels.

20[%] Wind Energy by 2030

Installed Wind Nameplate Capacity by State (2030)

Wind capacity would be installed across **46 states** in the 20% wind scenario.

20% Wind 06-19-

Electricity Generation Mix

Estimated Electric System Costs

Cumulative Discounted Electric System Cost through 2030 (Millions of 2006 Dollars)

> Approximately a 2% increase in cost, or \$43 billion in net present value.

Equivalent of 50 cents per month per household, not accounting for positive, offsetting impacts.

20% Wind Scenario: Projected Impacts

- Environment: Avoids air pollution, reduces GHG emissions, and reduces water use in electricity generation. Reduces electric sector CO₂ emissions by 825 million metric tons.
- U.S. energy security: Diversifies our electricity portfolio and represents an indigenous energy source with stable prices not subject to fuel volatility
- Energy consumers: Wind potentially reduces demand for fossil fuels, in turn reducing fuel prices and stabilizing electricity rates
- Local economics: Creates new income source for rural landowners and tax revenues for local communities in wind development areas.
- American workers: Generates well-paying jobs in sectors that support wind development, such as manufacturing, engineering, construction, transportation, and financial services. The new manufacturing will cause significant growth in the wind industry supply chain.
- Water savings: Reduce cumulative water use in the electric sector by 8% (4 trillion gallons)

Projected Impacts and Major Challenges

20% Wind Scenario: Major Challenges

- Investment in the nation's transmission system so the power generated is delivered to urban centers that need the increased supply;
- Larger electric load balancing areas, in tandem with better regional planning, so that regions can depend on a diversity of generation sources, including wind power;
- Continued reduction in wind capital cost and improvement in turbine performance through technology advancement and improved manufacturing capabilities; and
- Addressing potential concerns about local siting, wildlife, and environmental issues within the context of generating electricity.

Today's balkanized grid limits renewables

