

Transmission Planning for 100% Clean Electricity

Dr. Debra Lew, Associate Director, ESIG EESI Congressional Briefing June 11, 2021

How can we enable cleaner electricity while maintaining affordability and reliability?

Decarbonization requires action on a transformative scale

We need transmission to deliver significant resources

- We may need 1000 GW+ of new wind and solar for 100% clean electricity goals.
- Electrification will lead to significantly increased demand.
- Distributed energy resources (DERs) will contribute but are not sufficient on their own

Source: MISO RIIA Study, Preliminary results from VCE's ZeroByFifty Study, NREL Electrification Futures Study

WIS:dom[®]-P Installed Capacities For The United States

	MISO RIIA 100% buildout [MW]					
		DPV	UPV	wind		
	MISO	32,190	67,975	129,647		
	SPP	8,139	14,700	41,750		
	ΤVΑ	40,174	85,275	7,300		
	SERC	85,119	180,825	15,250		
	РЈМ	41,174	93,100	185,600		
	NYISO	8,483	19,675	31,600		
	Total	215,279	461,550	411,147		

A macro grid saves money – especially if you are decarbonizing

NREL Interconnection Seams Study

- With a 50% renewables goal, this HVDC macro grid has a benefit-to-cost ratio of 2.5
- With a 85% renewables goal, this HVDC macro grid has a benefit-to-cost ratio of 2.9

https://www.nrel.gov/analysis/seams.html

Transmission costs are tiny compared to other clean resources/infrastructure

s Integration Group

Hydro (ROR)

Hydro (Res)

of Energy Systems Integration and Operations

Brown and Botterud, 2020; NREL Interconnection Seams study; Preliminary results from VCE's ZeroByFifty Study

Transmission costs are tiny compared to other clean resources/infrastructure

of Energy Systems Integration and Operations

Hydro (ROR)

Hydro (Res)

Brown and Botterud, 2020; NREL Interconnection Seams study; Preliminary results from VCE's ZeroByFifty Study

Transmission is not just about delivering resources to load

Transmission contributes to resource adequacy

Transmission smooths all time scales of weather variability

Source: Enernex, EWITS, NREL/SR-550-47078, 2010; L. Nickell, SPP, CREPC Spring meeting, 2017 **Energy Systems Integration Group** *Charting the Future of Energy Systems Integration and Operations*

MISO found that transmission was the key enabler to meet reliability standards at 50% wind/solar

ESIG

https://cdn.misoenergy.org/RIIA%20\$ ummary%20Report520051.pdf

Can't we do this with storage? Or DERs?

Energy Systems Integration Group

Charting the Future of Energy Systems Integration and Operations

DERs are part of the solution. We still need utility-scale wind/PV

- Optimizing G, T&D saves money vs not including distribution in optimization
- Benefits are even bigger if you have clean energy goals - save \$473B by optimizing G, T&D
- Optimizing G, T&D builds more DERs and also builds more transmission

https://www.vibrantcleanenergy.com/wpcontent/uploads/2020/12/WhyDERs_TR_Final.pdf

ESIG Recommendations

1. Create a national transmission planning authority that conducts ongoing national transmission planning

- 2. Identify renewable energy zones
- 3. Design a national macro grid

https://www.esig.energy/transmissionplanning-for-100-clean-electricity/

Dr. Debra Lew <u>Debbie@esig.energy</u> (303) 819-3470

Extra slides

We evaluated a number of studies

Study	Region	Renewable Capacity	Clean Energy Level(s)	Annual Electricity Demand	Target Year		
Electrification Futures Study	United States and Canada	600 GW (wind) 1,000 GW (solar)	23% to 75% renewable energy	7,000 TWh	2050		
Interconnections Seam Study	United States (except Texas) and Canada	600-900 GW (wind and solar)	63% to 95% carbon free electricity	4,900 TWh	2038		
<u>MIT study</u>	United States	1,200 GW (wind) 1,100 GW (solar)	100% clean electricity	5,000 TWh	2040		
Renewable Integration Impact Assessment	United States - Eastern Interconnection	411 GW (wind) 677 GW (solar)	Up to 100% clean electricity for the eastern interconnection	2018 demand	N/A		
<u>ZeroByFifty</u>	United States	1,100 GW (wind) 1,000 GW (solar)	100% clean energy	9,000 TWh	2050		
Energy Systems Integration Group Charting the Future of Energy Systems Integration and Operations							

Interconnections Seam Study

- What's the value of interconnecting the east and west?
- Crossing the seam allows you to build the solar in the west and the wind in the east and share
- 50% renewables case: macro grid adds \$19B to transmission costs but saves \$48B (generation capacity, O&M and emissions), for a benefit/cost ratio of 2.5
- 85% renewables case (95% clean electricity): macro grid builds 40GW transfers across seam with a benefit/cost ratio of 2.9

50% Renewables case	BAU across HVDC seams Macro grid		
Objective function	Design 1	Design 3	Delta
Line investment (B\$)	61.21	80.10	18.89
Generation investment (B\$)	704.03	700.51	-3.52
Operation and maintenance (B\$)	1336.36	1300.70	-35.66
Emission cost (B\$)	171.10	162.50	-8.60
35-yr B/C ratio	-	-	2.52

https://www.nrel.gov/analysis/seams.html

ZeroByFifty

- What is the optimal resource and transmission expansion to decarbonize the whole energy economy including massive electrification?
- Considers widespread DERs, new nuclear, CCS, and hydrogen
- Co-optimize generation (utility-scale and distributed), storage and transmission; combines capacity expansion and production simulation
- Transmission expansion costs are \$200B and \$350B for 100% clean electricity and energy, respectively
- Transmission depends on scenario: ~38GW between east/west; 30GW between east and ERCOT; 8 GW between west and ERCOT
- Finds that if a macro grid is NOT built, it costs an additional \$1 Trillion to get to 100% clean energy by 2050

https://www.vibrantcleanenergy.com/wp-content/uploads/2020/11/ESIG_VCE_11112020.pdf

MIT Study - Value of Transmission for Decarbonization

- What is the value of coordination within regions, between regions and nationally?
- Co-optimized capacity expansion and dispatch model with 7 years of hourly weather
- Least-cost plan results in nearly double today's transmission system (in MW-miles) with 29 GW transfers between east and west and 74 GW between ERCOT and east
- Finds that an "every state for itself" approach has a levelized capital and O&M cost of \$135/MWh and that this cost can be reduced by 46% (to \$73/MWh) with inter-regional coordination and transmission expansion

https://doi.org/10.1016/j.joule.2020.11.013 Energy Systems Integration Group Charting the Future of Energy Systems Integration and Operations

Inter-state transmission None

- + Existing regional
- + New regional
- + Existing inter-regional
- + New inter-regional within interconnects
- + New inter-regional across interconnects

