Advancing the Deployment of Electric Vehicles

Patrick Davis, Program Manager, Vehicle Technologies Program
U.S. Department of Energy
October 2, 2012

- Research and Development
- Deployment & Training
- Recovery Act Manufacturing
- EV Everywhere
Electric Drive Vehicle R&D

Organizations
- ARPA-e
- EERE Vehicle Technologies Program
- Office of Science

Technologies
- Batteries: Li-ion and beyond Li-ion technologies
- Power Electronics: wide bandgap devices, capacitors, electrical architectures, packaging, charging
- Electric Motors: Non-permanent and PM magnet motors, new magnetic and motor materials
- Traction Drive System
- Thermal management
- Vehicle Systems – HVAC, Wireless Charging

Major Goals
- By 2020, develop an electric drive system with a cost of $8/kW and efficiency of >94%
- Battery goal: Reduce EV battery production cost to $300/kWh by 2015 and $125/kWh by 2022 while also improving abuse tolerance and range

Approximately Half of the EERE Vehicle Technologies FY12 and FY13 Budgets Support Electric Drive
Battery Costs are Coming Down Quickly

Future Direction

- Cost reduction, durability, safety, and increased specific energy:
 - Innovative development efforts and manufacturing improvements with potential to reach cost goals.
 - Development of high voltage, high capacity cathodes and high voltage electrolytes.
 - Develop Silicon Composite & Metal alloy materials and cells.
 - Expand focus on beyond-Lithium-ion technology.

Also Must Meeting Other Critical Criteria:
- Cycle life
- Calendar Life
- Safety and Abuse Tolerance
The World’s Largest Documented Electric Drive Vehicle Demonstration

- Use data on 13,000 vehicles and 20,000 charging locations:
 - 130,000 PHEV/EV test miles and 5,000 charging events documented each day
 - Full details of every charging event and vehicle trip are captured
Training and Deployment

- 10 Recovery Act projects to educate auto technicians, 1st responders, undergraduate/graduate students, teachers and the public
- 7 Graduate Automotive Technology Education Centers of Excellence
- 15 university teams participating in EcoCAR 2: Plugging into the Future
- 16 EV/PHEV community readiness projects to develop strategies and overcome market barriers
Johnson Controls

Major Lithium Ion battery production

• 175,000 square foot renovated advanced battery facility in Holland, MI, opened August 11, 2011.
• First U.S. facility to produce complete lithium-ion battery cells and systems for hybrid and EVs

Other ARRA Battery Production Projects

• SAFT – Jacksonville, FL
• Exide – Columbus, GA
• GM – Brownstown, MI
• A123 – Romulus, MI
• EnerDel – Comfort, IN
• East Penn – Lyon Station, PA
• Dow Kokam – Midland, MI
• LGChem – Holland, MI
Chemetall Foote (Rockwood Lithium)
Expanding America’s lithium production

- Expansion of lithium production facilities in Silver Peak, NV and Kings Mountain, NC
- Major domestic supplier to the lithium battery industry
- Will significantly increase U.S. capacity to produce lithium, which is mostly imported from South America
- NC facility finished June 2012, NV facility to be completed in 2013

Other Advanced Battery Supplier Manufacturing ARRA Projects
- Celgard – Charlotte, NC; Aiken, SC
- Honeywell – Buffalo, NY; Metropolis, IL
- BASF Catalysts – Elyria, OH
- EnerG2 – Albany, OR
- Novolyte Technologies – Zachary, LA
- FutureFuel – Batesville, AR
- Pyrotek – Sanborn, NY
- H&T Waterbury – Waterbury, CT
- Toda – Battle Creek, MI
Magna E-Car
Electric Drive Component Manufacturing

- 50,000 sq ft new production facility in Grand Blanc Township, MI opened April 2012
- At full production, could assemble full EV drivetrains and support 100,000 vehicles
- Agreement with Ford to supply key components for the Focus EV

Other Electric Drive Component Manufacturing ARRA Projects
- GM – White Marsh, MD; Wixom, MI
- Delphi – Kokomo, IN
- Allison Transmission – Indianapolis, IN
- Ford – Sterling Heights, MI
- Remy – Anderson, IN
- UQM – Frederick, CO
A DOE Clean Energy Grand Challenge with the goal of enabling U.S. companies to produce electric vehicles that are as affordable and convenient for the average American family as today’s gas-powered vehicles within the next 10 years (by 2022).

- Midsize sedan, majority of miles driven on electricity,
- < 5 year payback
- Sufficient range and fast charge capability for widespread adoption

- EV-Everywhere Framing Document is available and open for comment.
- Five stakeholder workshops conducted June-September 2012
- Finalization of the Initiative this Fall
Patrick Davis
Program Manager
202-586-8061
patrick.davis@ee.doe.gov

www.vehicles.energy.gov