Sustainable Aviation Fuels: A Market Opportunity

Chris Tindal

Assistant Director,
Commercial Aviation
Alternative Fuels Initiative
(CAAFI)

First flight from continuous commercial production of SAF, 10 March 2016

Fuel from World Energy - Paramount (HEFA-SPK 30/70 Blend).

Only facility offering continuous production of SAF at present.

Other batch production is occurring due to extreme customer interest.

CAAFI - Public/Private Partnership

A reflection of the 26+B usg U.S. Jet "market pull'

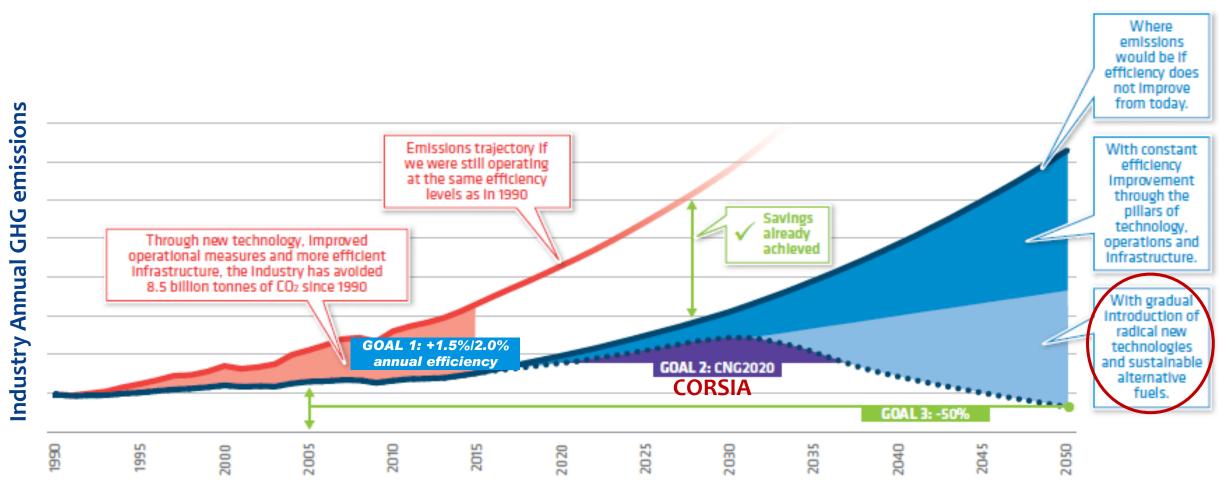
An aviation industry coalition established to facilitate and promote the introduction of alternative aviation fuel

Goal is development of non-petroleum, drop-in, jet fuel production with: Synthetic jet fuels, primarily from

- **Equivalent safety & performance**
- **Comparable cost**
- **Environmental improvement**
- Security of energy supply for aviation

Enables its diverse stakeholders to build relationships, share and collect data, identify resources, and direct research, development and deployment of alternative jet fuels www.caafi.org

CAAFI Sponsors



renewable sources

SAF a key component of the Technology Pillar; enabler for GHG containment strategy

Courtesy of ATAG: www.atag.org/our-publications/latest-publications.html Beginner's Guide to Sustainable Aviation Fuel

Business Aviation made similar commitments

COMMERCIAL AVIATION
ALTERNATIVE FUELS INITIATIVE

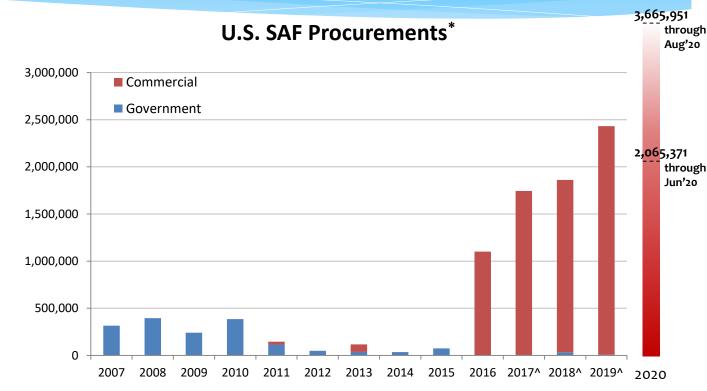
SAF (Sustainable Aviation Fuel)

a.k.a. aviation biofuel, biojet, alternative aviation fuel

Aviation Fuel: Maintains the certification basis of today's aircraft and jet (gas turbine) engines by delivering the properties of ASTM D1655 – Aviation Turbine Fuel – enables drop-in approach – no changes to infrastructure or equipment, obviating incremental billions of dollars of investment

Sustainable: Doing so while taking Social, Economic, and Environmental progress into account, especially addressing GHG reduction

How: Creating synthetic jet fuel with biochemical and thermochemical processes by starting with a different set of carbon molecules than petroleum ... a synthetic comprised of molecules essentially identical to petroleum-based jet (in whole or in part)


SAF Progress - Technical

- * SAF are becoming increasingly technically viable
 - * Aviation now knows we can utilize numerous production pathways (7 approved, 6 in-process, >15 in pipeline)
 - * Enabling use of all major sustainable feedstocks
 - (lipids, sugars, lignocellulose, hydrogen & carbon sources, circular-economy byproduct streams)
 - * Utilizing thermo-chemical and bio-chemical conversion processes to produce pure hydrocarbons, followed by standard refinery processes
 - * Following blending with petro-jet, SAF is drop-in, indistinguishable from petro-jet
 - Some future pathways expected to produce SAF blending components that will need less, or zero, blending
 - * Expanding exploration of renewable crude co-processing with refineries
 - * Continuing streamlining of qualification time, \$, methods

Where we stand on U.S. SAF consumption Initiation under way, still early

- Four years of sustained commercial use
- Commercial & General Aviation engaged
- * Two facilities in operation
- * Two facilities under construction, others in development
- Cost delta still a challenge, with policies favoring renewable diesel
- * In spite of that ... we still have \$6.5 B in airline offtake commitments for >350M gpy ... with more in development

Credit: FAA

*Reflects voluntarily reported data on use by U.S. airlines, U.S. government, manufacturers, other fuel users, and foreign carriers uplifting at U.S. airports. ^2017-2019 calculation includes reported EPA RFS2 RINs for jet fuel.

Year-end Production Levels (M gpy)

Worldwide SAF production capacity forecast Announced intentions*

world energy Paramount 25

Porvoo 34

~59+M

Fulcrum
#1, Sierra
7

~72+M

NESTE

Singapore & Rotterdam 480

LanzaJet > Freedom Pines

world energy
Paramount
150
~746+M

gevo Luverne

ReadiFuels2 locations
24

~830+M

Rodeo 290?

~990 - 1336 M

QVELOCYSAltalto

Immingham, UK 16

1B+

2020 2021 2022 2023 2024 2025

^{*} Not comprehensive; CAAFI estimates (based on technology used & public reports) where production slates are not specified

SAF offtake agreements

Beyond numerous demonstration programs

Initial 40M gpy nameplate facility
 With 25M gpy SAF capacity

* 24Oct'18: Moving forward with \$350M Paramount expansion to enable 306M gpy total capacity & jet capacity of 150M gpy; Fuel production expected by YE'22

Beyond numerous demonstration programs

Neat quantities not announced

Porvoo SAF Q4'18 restart supplied to:

Swedish Airports - SAS;

Mobile, Hamburg – Airbus;

Frankfort – Lufthansa;

Amsterdam – KLM;

Zurich – WEF;

Helsinki – Finnair;

Stockholm – Emirates, Swedavia;

SFO - American, Alaska, and JetBlue

SFO, London – Signature FBO

* Moving forward with significant expansion at Singapore and feasibility study at Rotterdam to enable ~480M gpy by 2023

Beyond numerous demonstration programs

Beyond numerous demonstration programs

* Initial 11M gpy nameplate facility,

neat quantities

37.5M gpy

90-180 M gpy

Project Development, License, and Offtake

remainder at 2-3X in size

* Per statements made at ABLC 2020

#2 Gary, IN @ 3x capacity

Then replication in Houston, UK, WA state, CA state, Australia Additional sites aligned with investor airlines' US focal cities previously discussed

Beyond numerous demonstration programs

^{* 100}M gpy by 2024 from 4 facilities

ALTERNATIVE FUELS INITIATIVE

SAF offtake agreements – pg 6 Beyond numerous demonstration programs

neat quantities

Gothenburg Refinery

Long-term supply negotiation (from 2023). Fueling all domestic flights by 2030.

Detail tbd; Montreal East pilot facility approaching completion

Airline commitments of greater ambition

oneworld

NZC'50

Obtain 30% of jet fuel from alternative sources by 2030; 06Nov'17

First U.S. Airline to Pledge to Reduce Own Emissions by 50% (vs. 2005) by 2050; 13Sep'18. \$40M SAF Investment Fund; 27Oct'19

Commits to flying 100 M passengers on SAF by 2030; 23Sep'19

Horizon 2030: offset 100% of domestic CO2 from 2020; reduce 2030's CO2/pax-km by 50% from 2005; R&D for French SAF industry; 01Oct'19

Net-zero carbon by 2050, offsetting all domestic emissions by 2020; 10Oct'19

Net-zero carbon by 2050, CNG from 2020 on all emissions, \$33M investment in SAF by 2030, matching of customer offsets; 25Nov'19

Reduce its net emissions by 50% from 2019 by the end of 2025, and achieve carbon neutrality by 2045 at the latest; 09Mar'20

SAF corresponding to the total jet consumption used in all SAS domestic flights, by the year 2030; 14Nov'19

Net Zero by 2040, and 100% renewable operations by 2025

Improve carbon efficiency by 45% by 2030 (16-28% SAF usage, or up to 500M liters)

Commitments of Greater Ambition Airlines using passenger booking options to offset cost

Customer option to pay for incremental price of SAF of €29.50 on any flight

Customer option to pay for incremental price of SAF in 20-min blocks of flight time for €10 / block (up to 80% CO2 reductions); fuel being allocated to future flights

Compensaid – calculates specific cost of SAF for specific flights and enables customer to pay for incremental price On select flights, CHF80 to offset carbon, 5% of which goes to SAF via Compensaid

Customer option to pay for incremental price of SAF for 3 categories of flight: intra-Finland ($\[\in \]$ 10), intra-EU ($\[\in \]$ 20), International ($\[\in \]$ 65); fuel being allocated to future flights

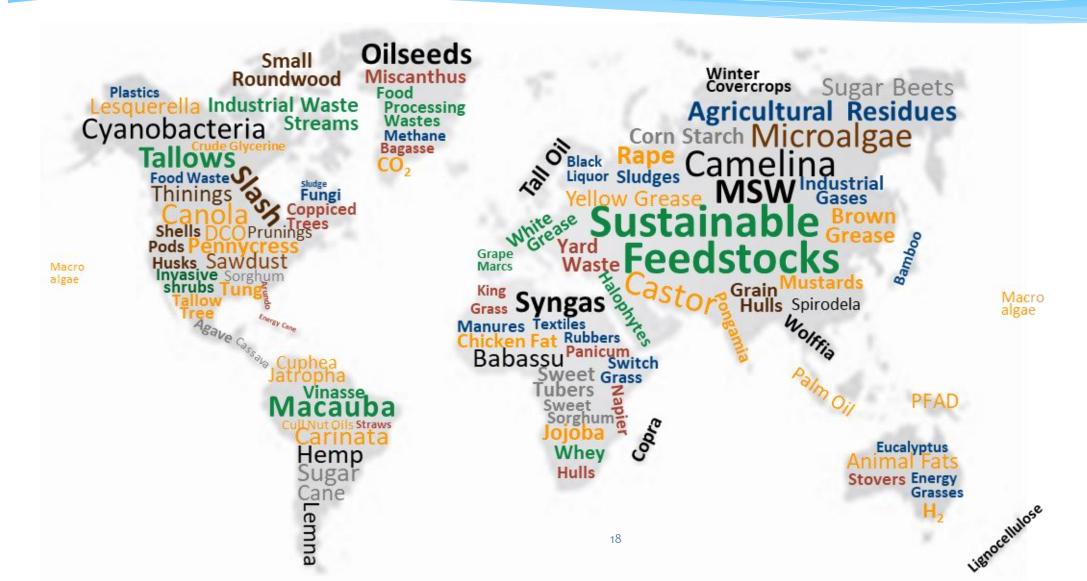
Other commitments of greater ambition

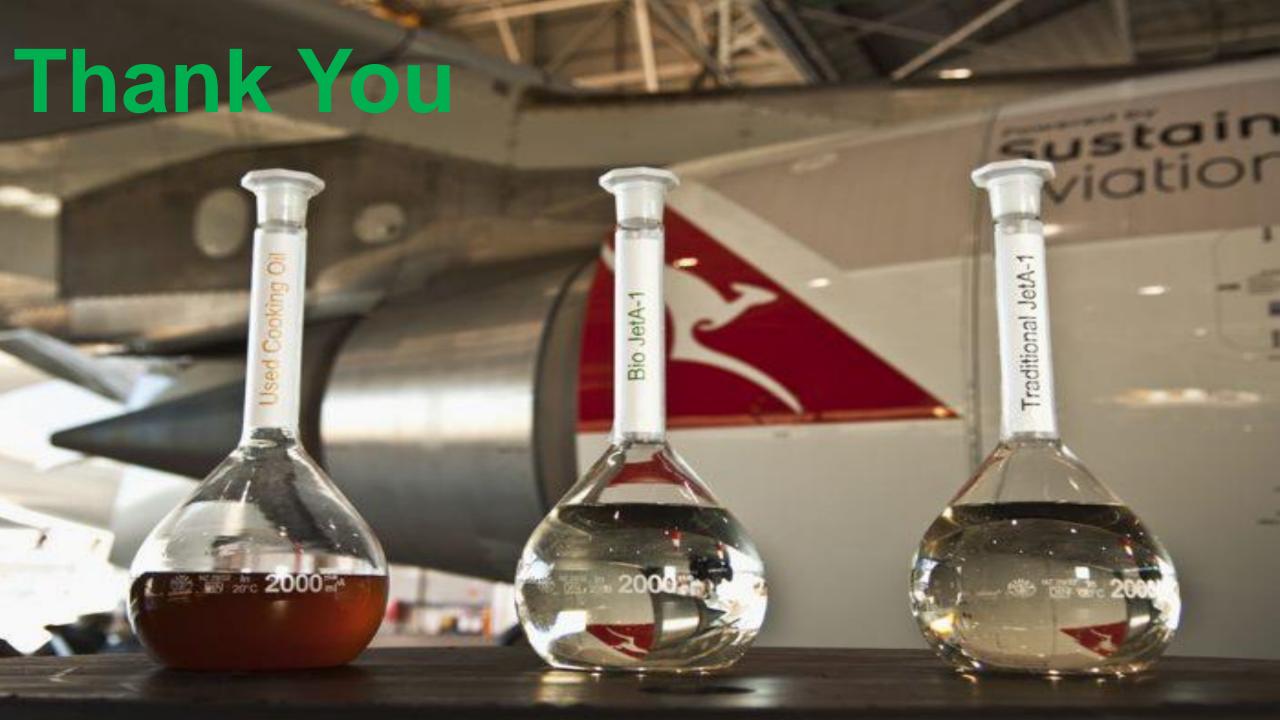
Norway's government introduces 0.5 % blending mandate for advanced aviation biofuels from 2020; 04Oct'18

Netherlands committed to transition all military aircraft to 20/80 AJF blend by 2030 and 70% by 2050; 23Jan'19

France, in alignment with EU Green Deal goals, announces SAF targets: 2% of SAF from 2025, 5% in 2030 and 50% in 2050; 27Jan'20

DG Move have now put together a comprehensive "roadmap" as a potential way forward for an integrated approach for policy intending to foster SAF commercialization in the European Union - ReFuelEU


Sweden's government introduces GHG reduction mandate for jet fuel, from -0.8% in 2021 to -27% in 2030; Fossil free by 2045; 11Sep'20


SAF progress – Significant commercial pull!

- * First facilities on-line, producing SAF at various run-rates
- * Commercial agreements being pursued, fostered by policy and other unique approaches
- * Line of sight to first billion gallons, but reflecting only 1% of market need
- * Making progress, but still significant challenges only modest production: focus on enabling <u>commercial viability</u>
- * Potential for acceleration a function of engagement, offtakes, first facilities' success replication, policy, ...
- * ... and additional technologies that lower production cost, lower capital, enable byproduct revenue

SAF: from a diverse set of world-wide feedstocks Wastes, residues, purpose grown, circular-economy byproducts

Chris Tindal Assistant Director, CAAFI

Tindal.CAAFI.AD@Gmail.com www.CAAFI.org

Mobile and WhatsApp - +1-843-345-3810

