The Importance of Mineral Resources in a National-International Context

Jonathan G. Price

State Geologist Emeritus Nevada Bureau of Mines and Geology

The Importance of Mineral Resources in a National-International Context

Demand for mineral resources will continue to grow.

• We are unlikely to run out of mineral resources (globally).

• Nonetheless, there are challenges for the United States.

Demand is high for nearly every mineral resource, due to rising population and average standard of living.

Demand is high for nearly every mineral resource.

Global copper production in 2012 (17.0 million metric tons) equaled over 100 years of production from the Bingham Canyon mine in Utah (17.0 million metric tons).

Demand is high for nearly every mineral resource.

The number of mineral commodities in demand for products in society has increased markedly in the last 80 years.

Source: USGS data

Economic geologists have been quite successful in finding more ore deposits in known areas.

The Round Mountain gold mine in Nevada (volcanic-rock-hosted deposit) discovered in 1904, has yielded 13 million ounces of gold from 1977 to 2012 – continuous record of discovery around the initial deposit.

2013

Discoveries continue to feed the biggest gold boom in US and world history.

Archean (2.5 to 4.0 Ga) – Au, Ni, U

Proterozoic (542 Ma to 2.5 Ga) – Fe, Mn, V, Pt, Pd, Cr, Ni, Au, Cu, Co, U, Ti, diamonds

Source for geologic map: www.OneGeology.org --

Discoveries continue to be made in traditional terrains, such as Precambrian cratons, throughout the world – limits are political and economic, not technical. Jurassic to Recent oceanic crust – potential for ore deposits of manganese nodules (Mn, Ni, Co, Cu), massive sulfide deposits & seafloor vents (Cu, Zn, Pb, Au, Ag), and phosphate nodule deposits (P)

Source for geologic map: www.OneGeology.org -

We have barely started to explore the oceans – political and legal challenges are probably more important than technical challenges.

Economic geologists have been quite successful in finding more ore deposits in known areas, deposits in new areas, and new types of deposits.

Examples of some new types of ore deposits recognized and brought into production in the last 55 years.

<u>Deposit type</u>	<u>Type locality (year discovered)</u> and new features
Carlin Au	Carlin, Nevada (1961): disseminated gold in sedimentary rocks
Roll-front U	Wyoming, Kazakhstan (1960s): redox boundaries in sandstones
Granite-hosted U	Rössing, Namibia (1960s): U-rich granite
Unconformity U	Rabbit Lake, Saskatchewan (1968): high-grade U near unconformities
Disseminated Ni	Mt. Keith, W. Australia (1969): disseminated Ni sulfides in komatiitic lava channels
Iron oxide Cu-Au	Olympic Dam, S. Australia (1975): iron-oxide-rich ores in huge regional alteration systems
Intrusion-related Au	Fort Knox, Alaska (1980s): Au in granitic rocks, without Cu
Ion Absorption REE	South China (1980s): low-grade REEs with kaolinite in weathered granites

More new types of ore deposits will be discovered in the future...

We may not need to worry about mining on the Moon, Mars, or asteroids for some time.

Though thinking about how ore deposits might form on such bodies could help us be more imaginative on Earth!

The Importance of Mineral Resources in a National-International Context

Demand for mineral resources will continue to grow.

• We are unlikely to run out of mineral resources (globally).

• Nonetheless, there are challenges for the United States.

Challenges for the United States

China is #1 in terms of mineral-resource production.

China's economy continues to boom, although 2012 iron-ore production suggests a slowdown.

Year

In production of 46 mineral commodities, China ranks well above all others.

Country Number of commodities for which this country is the #1 producer Number of commodities for which this country is among the top 3 producers

China	24	31
USA	2	16
Australia	2	13
Russia	1	10
Canada	1	9
Chile	3	6
South Africa	3	6
Kazakhstan	1	4
Brazil	1	3
Congo	1	2

2012 production statistics from USGS, EIA for coal and uranium in 2011

Rare Earth Elements (REEs)

 $Culn_xGa_{(1-x)}Se_2$, CdTe, GaAs, Ag, and Si_{1-x}Ge_x for solar panels

 $Fe_{14}(Nd,Dy)_2B$, $SmCo_5$, and Sm_2Co_{17} for magnets, e.g., in wind turbines

Li, La, Ni, and V for batteries

Pt, Pd for catalysts in fuel cells

Tb, Eu in fluorescent lights

Arrowhead clipart from www.firstpeople.us

Critical and strategic minerals do change with time.

_								2					
Energy Critical Elements:													
5,													
								4.003					
			5	6	7		9	10					
			В	C	N	0	F	Ne					
			Boron 10.811	Carbon 12.0107	Nitrogen 14.00674	Oxygen 15.9994	Fluorine 18.9984032	Neon 20.1797					
			13	14	15	16		-					
			A	Si	Р	S							
			Aluminum	Silicon	Phosphorus	Sulfur							
28	29	30	26.981538 31	28.0855 32	30.973761 33	32.066 3.4		(
Ni	Ču	Zn	Ga	Ge	As	Se	All and	~					
Nickel	Copper	Zinc	Gallium	Germanium	Arsenic	Selenium	NT.						
58.6934	63.546	65.39	69.723	72.61	74.92160	78.96							
46	47	48	49	50	51	52							
Pd	Ag	Cd	In	Sn	Sb	Те	A second						
Palladium 106.42	Silver 107.8682	Cadmium 112.411	Indium 114.818	Tin 118.710	Antimony 121.760	Tellurium 127.60							
78	79		81	82		84							
Pt	Αu	Hg	TI	Pb	Bi	Po	At	Rn					
Platinum		Mercury	Thallium	Lead		Polonium	Astatine	Radon					
195.078 65	196.96655 66	200.59 67	204.3833 68	207.2 69	208.98038	(209)	(210)	(222)					
тЬ	Dv	Ho	Er	Tm	Yb	Lu							
Terbium	Dysprosium	Holmium	Erbium	Tholium	Ytterbium	LU							
158.92534	162.50	164.93032	167.26	168.93421	173.04	174.967							

Securing Materials for Emerging Technologies

A REPORT BY THE APS PANEL ON PUBLIC AFFAIRS & THE MATERIALS RESEARCH SOCIETY

What minerals will be critical for the country?

2008

MINERALS, CRITICAL MINERALS, AND THE U.S. ECONOMY

HARDROCK MINING ON FEDERAL LANDS

NATIONAL RESEARCH COUNCIL

1999

Will the USA be a major producer of mineral resources in the future?

MINERAL RESOURCES AND SUSTAINABILITY

challenges for earth scientists

Will the USA be a major producer of mineral resources in the future?

Or will we, perhaps by default, practice "environmental imperialism" – export the negative environmental, health, safety, aesthetic, and cultural aspects of mining to other countries? Artisanal mining outside the US will likely continue as a health, safety, and environmental challenge for society, governments, and industry worldwide.

Four artisanal miners (galamsey) work unsafely, without personal protective equipment or ground support, near Kyereboso in Ghana in 2008.

Gold mill in Sulawesi (Larry James photo)

Recent reports (Science Oct. 2013) state that 70% of Hg pollution worldwide is from artisanal mining.

Using blowtorch to remove mercury from amalgam, Sulawesi (Larry James photo)

EVOLUTIONARY AND REVOLUTIONARY TECHNOLOGIES FOR MINING

NATIONAL RESEARCH COUNCIL

Will the US government invest in research needed to discover, extract, and process mineral resources in an environmentally responsible manner?

2002

NATIONAL RESEARCH COUNCIL OF THE NATIONAL ACADEMIE

MATERIALS COUNT

The Case for Material Flows Analysis

Will the US government invest in research on improving the rate of recycling of mineral resources, and on finding substitutes for mineral resources that become too expensive for commercial or other applications? More recycling can be accomplished by increasing collection rates of various products, better product design with recycling in mind, and improvements in recycling technologies. - Reck and Graedel (2012).

1 H			Recycled at a rate higher than 50% Recycled at a rate less than 1%												² He		
з Li	4 Be		5 6 7 8 9 B C N O F												10 Ne		
11 Na	12 Mg											13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
	Ca	30		Ň	C	IVIII	re			Cu	211	Ga	Ge	AS	Je	ы	N
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ва	La	Hf	Та	w	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
		89															
Fr	ка	AC															
Fr	Ra	Ac															

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Се	Pr	Nd	Рт	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
90	91	92											
Th	Pa	U											
				Courses C	and all at a	L (2011)							
			J	Source: Graedel et al. (2011)									

Emerging Workforce Trends in the U.S. Energy and Mining Industries

A CALL TO ACTION

Do we have, and are we training, the people needed to ensure the US can meet its mineral and energy needs?

NATIONAL RESEARCH COUNCIL OF THE NATIONAL ACADEMIES

2013

Geologic Mapping

Future Needs

Committee on Geologic Mapping

Board on Earth Sciences

Commission on Physical Sciences, Mathematics, and Resources

National Research Council

NATIONAL ACADEMY PRESS Washington, D.C. 1988 BEYOND MAPPINIC

NATIONAL RESEARCH COLL

MEETING NATIONAL NEEDS THROUGH ENHANCED GEOGRAPHIC INFORMATION SCIENCE

Will the US and other governments support the basic research, including geologic mapping, needed to understand where resources are likely to be found?

Will the US and other governments support the preservation of geological data and collections that stimulate discovery?

Induced Seismicity Potential in ENERGY TECHNOLOGIES

What may be the unintended consequences of new mineral resource production ?

2012

Mineral Resources and Society

A Review of the U.S. Geological Survey's Mineral Resource Surveys Program Plan

NATIONAL RESEARCH COUNCIL 1996

FUTURE ROLES AND OPPORTUNITIES FOR THE U.S. GEOLOGICAL SURVEY

The Importance of Mineral Resources in a National-International Context

Demand for mineral resources will continue to grow.

• We are unlikely to run out of mineral resources (globally).

• Nonetheless, there are challenges for the United States.

The Importance of Mineral Resources in a National-International Context

Jonathan G. Price

State Geologist Emeritus Nevada Bureau of Mines and Geology

