

Materials will be available at: www.eesi.org/111820transportation

Tweet about the briefing: #eesitalk @eesionline

CONGRESSIONAL BRIEFING

After COVID: A Lower Carbon Future for Commercial Aviation

Briefing Series: By Air, Land, and Sea: Navigating the Climate Future

Wednesday, November 18, 2020

About EESI...

NON-PROFIT

Founded in 1984 by a bipartisan Congressional caucus as an independent (i.e., not federally-funded) non-profit organization

💲 🛛 NON-PARTISAN

Source of non-partisan information on environmental, energy, and climate policies

S DIRECT ASSISTANCE

In addition to a full portfolio of federal policy work, EESI provides direct assistance to utilities to develop "on-bill financing" programs

SUSTAINABLE SOCIETIES

Focused on win-win solutions to make our energy, buildings, and transportation sectors sustainable, resilient, and more equitable

...About EESI

HILL BRIEFINGS

Video recordings and written summaries of Congressional briefings

CLIMATE CHANGE SOLUTIONS

Bi-weekly newsletter with all you need to know including a legislation tracker

SOCIAL MEDIA (@EESIONLINE)

Follow us on Twitter, Facebook, LinkedIn, Instagram, and YouTube

FACT SHEETS

Timely, science-based coverage of climate and clean energy topics

Sustainable Aviation Fuels: A Market Opportunity

Chris Tindal

Assistant Director, Commercial Aviation Alternative Fuels Initiative

First flight from continuous commercial production of SAF, 10 March 2016

Fuel from World Energy - Paramount (HEFA-SPK 30/70 Blend).

Only facility offering continuous production of SAF at present. Other batch production is occurring due to extreme customer interest.

CAAFI - Public/Private Partnership A reflection of the 26+B usg U.S. Jet "market pull"

An aviation industry coalition established to facilitate and promote the introduction of alternative aviation fuel

Goal is development of non-petroleum, drop-in, jet fuel production with: Synthetic jet fuels, primarily from

- Equivalent safety & performance *
- **Comparable cost** *
- **Environmental improvement** *
- Security of energy supply for aviation *

Enables its diverse stakeholders to build relationships, share and collect data, identify resources, and direct research, development and deployment of alternative jet fuels

www.caafi.org

renewable sources

CAAFI

Airlines for America We Connect the World

SAF a key component of the Technology Pillar; enabler for GHG containment strategy

Courtesy of ATAG: <u>www.atag.org/our-publications/latest-publications.html</u> Beginner's Guide to Sustainable Aviation Fuel Business Aviation made similar commitments

COMMERCIAL AVIATION ALTERNATIVE FUELS INITIATIVE

SAF (Sustainable Aviation Fuel) a.k.a. aviation biofuel, biojet, alternative aviation fuel

Aviation Fuel: Maintains the certification basis of today's aircraft and jet (gas turbine) engines by delivering the properties of ASTM D1655 – Aviation Turbine Fuel – enables drop-in approach – no changes to infrastructure or equipment, obviating incremental billions of dollars of investment

Sustainable: Doing so while taking Social, Economic, and Environmental progress into account, especially addressing GHG reduction

How: Creating synthetic jet fuel with biochemical and thermochemical processes by starting with a different set of carbon molecules than petroleum ... a synthetic comprised of molecules essentially identical to petroleum-based jet (in whole or in part)

SAF Progress - Technical

- * SAF are becoming increasingly technically viable
 - * Aviation now knows we can utilize numerous production pathways (7 approved, 6 in-process, >15 in pipeline)
 - * Enabling use of all major sustainable feedstocks

(lipids, sugars, lignocellulose, hydrogen & carbon sources, circular-economy byproduct streams)

- * Utilizing thermo-chemical and bio-chemical conversion processes to produce pure hydrocarbons, followed by standard refinery processes
- * Following blending with petro-jet, SAF is drop-in, indistinguishable from petro-jet
- * Some future pathways expected to produce SAF blending components that will need less, or zero, blending
- * Expanding exploration of renewable crude co-processing with refineries
- * Continuing streamlining of qualification time, \$, methods

Where we stand on U.S. SAF consumption Initiation under way, still early

- Four years of sustained commercial use
- * Commercial & General Aviation engaged
- * Two facilities in operation
- * Two facilities under construction, others in development
- Cost delta still a challenge, with policies favoring renewable diesel
- In spite of that ... we still have
 \$6.5 B in airline offtake
 commitments for >350M gpy ...
 with more in development

*Reflects voluntarily reported data on use by U.S. airlines, U.S. government, manufacturers, other fuel users, and foreign carriers uplifting at U.S. airports. ^2017-2019 calculation includes reported EPA RFS2 RINs for jet fuel.

3,665,951

Worldwide SAF production capacity forecast Announced intentions*

* Not comprehensive; CAAFI estimates (based on technology used & public reports) where production slates are not specified

SAF offtake agreements Beyond numerous demonstration programs

* 24Oct'18: Moving forward with \$350M Paramount expansion to enable 306M gpy total capacity & jet capacity of 150M gpy; Fuel production expected by YE'22

SAF offtake agreements – pg 2 Beyond numerous demonstration programs

feasibility study at Rotterdam to enable ~480M gpy by 2023

Neat guantities not announced

SAF offtake agreements – pg 3 Beyond numerous demonstration programs

SAF offtake agreements – pg 4 Beyond numerous demonstration programs

* Per statements made at ABLC 2020

#2 Gary, IN @ 3x capacity

Then replication in Houston, UK, WA state, CA state, Australia

Additional sites aligned with investor airlines' US focal cities previously discussed

SAF offtake agreements – pg 5 Beyond numerous demonstration programs

15

SAF offtake agreements – pg 6 Beyond numerous demonstration programs

neat quantities

Airline commitments of greater ambition

Obtain 30% of jet fuel from alternative sources by 2030; 06Nov'17

First U.S. Airline to Pledge to Reduce Own Emissions by 50% (vs. 2005) by 2050; 13Sep'18. \$40M SAF Investment Fund; 27Oct'19

Commits to flying 100 M passengers on SAF by 2030; 23Sep'19

Horizon 2030: offset 100% of domestic CO2 from 2020; reduce 2030's CO2/pax-km by 50% from 2005; R&D for French SAF industry; 01Oct'19

Net-zero carbon by 2050, offsetting all domestic emissions by 2020; 10Oct'19

Net-zero carbon by 2050, CNG from 2020 on all emissions, \$33M investment in SAF by 2030, matching of customer offsets; 25Nov'19

Reduce its net emissions by 50% from 2019 by the end of 2025, and achieve carbon neutrality by 2045 at the latest; 09Mar'20

SAF corresponding to the total jet consumption used in all SAS domestic flights, by the year 2030; 14Nov'19

Net Zero by 2040, and 100% renewable operations by 2025

Improve carbon efficiency by 45% by 2030 (16-28% SAF usage, or up to 500M liters)

Multiple airlines now committing to net zero carbon by 2050 (NZC'50). Pressure to look at more progress by 2035.

Commitments of Greater Ambition Airlines using passenger booking options to offset cost

FINNAIR

Customer option to pay for incremental price of SAF of €29.50 on any flight

Customer option to pay for incremental price of SAF in 20min blocks of flight time for €10 / block (up to 80% CO2 reductions); fuel being allocated to future flights

Compensaid – calculates specific cost of SAF for specific flights and enables customer to pay for incremental price On select flights, CHF80 to offset carbon, 5% of which goes to SAF via Compensaid

Customer option to pay for incremental price of SAF for 3 categories of flight: intra-Finland (\notin 10), intra-EU (\notin 20), International (\notin 65); fuel being allocated to future flights

Other commitments of greater ambition

Norway's government introduces 0.5 % blending mandate for advanced aviation biofuels from 2020; 04Oct'18

Netherlands committed to transition all military aircraft to 20/80 AJF blend by 2030 and 70% by 2050; 23Jan'19

France, in alignment with EU Green Deal goals, announces SAF targets: 2% of SAF from 2025, 5% in 2030 and 50% in 2050; 27Jan'20

DG Move have now put together a comprehensive "roadmap" as a potential way forward for an integrated approach for policy intending to foster SAF commercialization in the European Union - ReFuelEU

Sweden's government introduces GHG reduction mandate for jet fuel, from -0.8% in 2021 to -27% in 2030; Fossil free by 2045; 11Sep'20

SAF progress – Significant commercial pull !

- * First facilities on-line, producing SAF at various run-rates
- * Commercial agreements being pursued, fostered by policy and other unique approaches
- * Line of sight to first billion gallons, but reflecting only 1% of market need
- Making progress, but still significant challenges only modest production: focus on enabling <u>commercial viability</u>
- * Potential for acceleration a function of engagement, offtakes, first facilities' success replication, policy, ...
- * ... and additional technologies that lower production cost, lower capital, enable byproduct revenue

SAF: from a diverse set of world-wide feedstocks Wastes, residues, purpose grown, circular-economy byproducts

Thank You

2000 -M

Bio JetA-

iOr

JetA-1

Fraditional .

Chris Tindal Assistant Director, CAAFI

<u>Tindal.CAAFI.AD@Gmail.com</u> <u>www.CAAFI.org</u> Mobile and WhatsApp - +1-843-345-3810

EXPLORE FLIGHT

-

NASA Aeronautics Research Mission Directorate Overview for the Environment & Energy Study Institute (EESI) Barbara Esker, Deputy Director Advanced Air Vehicles Program November 18, 2020

NASA Aeronautics Strategies for Research

https://www.nasa.gov/sites/default/files/atoms/files/sip-2019-v7-web.pdf

Safe, Efficient Growth in Global Operations

Achieve safe, scalable, routine, high-tempo airspace access for all users

Innovation in Commercial Supersonic Aircraft

· Achieve practical, affordable commercial supersonic air transport

Ultra-Efficient Subsonic Transports

 Realize revolutionary improvements in economics and environmental performance for subsonic transports with opportunities to transition to alternative propulsion and energy.

Safe, Quiet, and Affordable Vertical Lift Air Vehicles

• Realize extensive use of vertical lift vehicles for transportation and services including new missions and markets

In-Time System-Wide Safety Assurance

• Predict, detect and mitigate emerging safety risks throughout aviation systems and operations

Assured Autonomy for Aviation Transformation

Safely implement autonomy in aviation applications

25

NASA Aeronautics Strategies for Research

Technology Readiness Level, TRL

Additional points -

- NASA & FAA coordination so that the right technical data and insights are available to support eventual certification and regulatory decisions
- Infusion of technology into a fleet takes time. Technology availability is only one piece of a broader business decision.

26

Technology to Help Enable the Next Generation of Subsonic Transports

Four Key Subsonic Transport Technologies

Create new "S" curve for the next 50 years of subsonic transports

Electrified Aircraft Propulsion

- Improved efficiency/emissions
- Mild hybrid systems promising for early 2030s

Small Core Gas Turbine

- · Increased gas turbine efficiency
- Facilitates airframe integration conventional or EAP

Transonic Truss-Braced Wing

- Increased aerodynamic and structural efficiency
- Propulsion system integration and high-rate production

High-Rate Composites

- Critical to U.S. competitiveness via reduced delivery time
- Reduced time/cost to market with increased performance

Electrified Aircraft Propulsion

Small Core Gas Turbine

High-Rate Composites

Transonic Truss-Braced Wing

ARMD is advancing these key technologies to create market opportunities

28

Turbofan Engine Overview

Hybrid Thermally-Efficient Core Technologies

NASA has engaged industry to determine candidate technologies

Advanced casing treatments

Advanced thermal management

Transport-Class, Electrified Aircraft Propulsion Advancing Technical & Integration Readiness

Project planning and formulation efforts underway

31

High Rate Composite Manufacturing

Game-changing manufacturing/delivery rate needed to meet single aisle demand

- Goal: enable 4-6X manufacturing rate increase for composite airframe structures (~15 → ~100/month)
- Shift from focus on weight to balance rate, cost, & weight
- Demonstrate high-rate manufacturing concepts at full scale (TRL/Manufacturing Readiness Level (MRL) 3+)
 - Evolving State of the Art (SoA) thermosets
 - Thermoplastics
 - Resin Transfer Molding
 - Materials, processes, and architectures
- Demonstrate model-based engineering tools for efficient design, development, and certification
- Partner with Industry and FAA for realistic requirements
 - Leverage industry expertise and efforts

Rapid prototype and evaluation of manufacturing concepts, down-select at smaller scale, and mature concepts at larger scale

32

Transonic Truss-Braced Wing Technology

University Leadership Initiative Engaging the University Community

3 rounds of solicitations – seeking & awarding proposals addressing all Strategic Thrusts

- 13 awards with 47 universities
- 5 HBCUs and 5 MSIs
- 240 proposals submitted

- 1631 team members
- 1170 different people
- 20-50 students per team
- 191 different proposing Principal Investigators

34

Thank you

What did you think of the briefing?

Please take 2 minutes to let us know at: www.eesi.org/survey

Materials will be available at: www.eesi.org/111820transportation

> Tweet about the briefing: #eesitalk @eesionline

Wednesday, November 18, 2020