Energy Efficient Infrastructure for More Resilient Local Economies: The Role of District Energy/CHP & Microgrids





## EESI Briefing 562 Dirksen Senate Office Building Washington, DC May 8, 2013

# Agenda

- Introductions Carol Werner, EESI
- Industry Overview Rob Thornton, IDEA
- Case Study, Resilient Institution: Princeton University – Ted Borer, Princeton University
- Case Study, Urban Efficiency & Reliability Bill DiCroce, Veolia Energy NA
- The Case for Cutting Waste Ken Smith, Ever-Green Energy
- Policy/Legislative Options- Mark Spurr, IDEA
- Q&A

Energy Efficient Infrastructure for More Resilient Local Economies: The Role of District Energy/CHP & Microgrids



Robert Thornton, President & CEO

EESI Briefing 562 Dirksen Senate Office Building Washington, DC May 8, 2013





QTR

REPORT ON THE FIRST QUADRENNIAL TECHNOLOGY REVIEW

"For the average coal plant, only 32% of the energy is converted to electricity; the rest is lost as heat." -Page VI, Executive Summary

### **Efficiency of US Power Generation**

#### U.S. COAL-FIRED POWER PLANTS RANKED BY EFFICIENCY

| Decile  | No of<br>units | Net<br>nameplate<br>capacity<br>(GW) | Capacity<br>factor | 2007 total<br>generation<br>(BkWh) | 2007 generation-weighted<br>efficiency (HHV) |
|---------|----------------|--------------------------------------|--------------------|------------------------------------|----------------------------------------------|
| 1       | 181            | 30                                   | 67%                | 177                                | 26.5%                                        |
| 2       | 108            | 30                                   | 70%                | 180                                | 30.0%                                        |
| 3       | 90             | 30                                   | 73%                | 189                                | 31.0%                                        |
| 4       | 73             | 30                                   | 73%                | 189                                | 31.7%                                        |
| 5       | 84             | 30                                   | 75%                | 194                                | 32.4%                                        |
| 6       | 75             | 30                                   | 69%                | 181                                | 33.2%                                        |
| 7       | 79             | 29                                   | 71%                | 182                                | 34.0%                                        |
| 8       | 70             | 30                                   | 70%                | 186                                | 34.9%                                        |
| 9       | 57             | 29                                   | 72%                | 184                                | 35.9%                                        |
| 10      | 46             | 30                                   | 74%                | 192                                | 37.9%                                        |
| Overall | 863            | 297                                  | 71%                | 1,856                              | 32.5%                                        |



Brayton Point Power Station, Somerset, MA – 1,537 MW Pre-2011: Once-through cooling – Taunton River:Mount Hope Bay



#### **Brayton Point Cooling Towers – \$570 Million in 2011**



#### Total environmental compliance \$1.1 billion since 2005.





Somerset power plant put up for sale Boston Globe, Sept 7, 2012

Dominion Loss on Write-Downs; Core Improves... *WSJ*, Jan 31, 2013

Energy company Dominion Resources posts 4Q loss – *The Virginian Pilot, Jan 31, 2013* 

### **Heat Transmission Systems**



### **The Greater Copenhagen DH System**



#### World Class CHP – 90%+Efficiency Avedore 1&2, Copenhagen



Unit 1 (810MW) – Coal; Unit 2 (900 MW) – Multi-Fuel (straw; biomass, etc)



#### **Energy-Efficiency Comparisons**



District Energy/ Combined Heat and Power Plant 100% Fuel Input



# What is a District Energy/Microgrid?

- Local "distributed" generation
- Robust, economic assets 24/7/365
- Generation located near load centers & customer density; often mission-critical
- Integrating CHP; thermal energy; electricity generation; thermal storage and renewables
- CHP generation interconnected with regional & local electricity grid
- Able to "island" in the event of grid failure



# District Energy/Microgrid – Community Scale Energy Solution

- Underground network of pipes "<u>combines"</u> heating and cooling requirements of multiple buildings
- Creates a "<u>market</u>" for valuable thermal energy
- Aggregated thermal loads creates <u>scale</u> to apply fuels, technologies not feasible on singlebuilding basis
- Fuel flexibility improves energy security, local economy



### Infrastructure for Local Clean Energy Economy



- Connects thermal energy sources with users
- Urban infrastructure hidden community asset
- Robust and reliable utility services
- Energy dollars re-circulate in local economy

### **Future Proofing A More Resilient City**





District Energy Thermal Only: Excellent Near Term Opportunities for Microgrid/CHP Integration

- 300 District Heating systems; 56,000,000 MMBtu/Hr heat demand in:
  - Cities/Communities
  - Campuses
  - Airports
  - Military bases
- Represents approx. 11 GW near term CHP potential
- Aggregated customer thermal loads facilitates efficient, competitive CHP generation





### District Energy/CHP/Microgrid Local Opportunity Drivers





- Growing demand for greater grid reliability and resiliency
- Desire to expand local tax base & replace remote coal generation
- Tapping local energy supplies to improve trade balance & drive economic multiplier
- More sustainable energy sources to help compete for high quality employers, factories, tenants
- Cutting GHG emissions and addressing climate adaptation
- Local infrastructure advantages in extreme weather events

#### **Super Storm Sandy: By the Numbers**

- 820 miles in diameter on 10/29/12
  - Double the landfall size Isaac & Irene combined
- Caused 106 fatalities
- Total estimated cost to date \$71 billion+ (dni lost business)
  - New York \$42
  - New Jersey \$29
- Affected 21 states (as far west as Michigan)
- 8,100,000 homes lost power

 57,000 utility workers from 30 states & Canada assisted Con Ed in restoring power

#### Long Island, NY



200

HS

Danbury , Cl

1



### NYC Co-Op City Bronx, New York

- "City within a city" 60,000 residents, 330 acres, 14,000+ apartments, 35 high rise buildings
- One of the largest housing cooperatives in the world; 10<sup>th</sup> largest city in New York State
- 40 MW cogeneration plant maintained power before, during and after the storm (heat & power)



http://www.forbes.com/sites/williampentland/2012/10/31/where-the-lights-stayed-on-during-hurricane-sandy/

### **Mission-Critical Operations**

- Nassau Energy Corp. (Long Island, NY) 57 MW CHP
  - Supplies thermal energy to 530 bed Nassau University Medical Center, Nassau Community College, evacuation center for County
  - No services lost to any major customers during Sandy
- Marina Thermal (Atlantic City) 25,000 Tons; 335,000 #/hr, 8 MW
- Danbury Hospital (Danbury, CT) -
  - supplies 371 bed hospital with power and steam to heat buildings, sterilize hospital instruments & produce chilled water for AC
  - \$17.5 million investment, 3-4 year payback, cut AC costs 30%
- South Oaks Hospital (Long Island, NY) 1.3 MW CHP
- Hartford Hospital/Hartford Steam (CT) 14.9 MW CHP
- Bergen County Utilities Wastewater (Little Ferry, NJ) 2.8 MW CHP (Process sewage for 47 communities)

#### Princeton University, NJ

#### Stony Brook Univ, NY

Ewing, NJ

#### Fairfield, CT

#### **Resilient University Microgrids**

- The College of New Jersey (NJ) 5.2 MW CHP
  - "Combined heat and power allowed our central plant to operate in island mode without compromising our power supply." - Lori Winyard, Director, Energy and Central Facilities at TCNJ
- Fairfield, University (CT) 4.6 MW CHP
  - 98% of the Town of Fairfield lost power, university only lost power for a brief period at storm's peak
  - University buildings served as "area of refuge" for off-campus students
- Stony Brook University (LI, NY) 45 MW CHP
  - < 1 hour power interruption to campus of 24,000 students (7,000 residents)</p>
- NYU Washington Square Campus (NYC) 13.4 MW CHP
- Princeton University (NJ) 15 MW CHP
  - CHP/district energy plant supplies all heat and hot water and half of the electricity to campus of 12,000 students/faculty
  - "We designed it so the electrical system for the campus could become its own island in an emergency. It cost more to do that. But I'm sure glad we did." – Ted Borer, Energy Manager at Princeton University

## Thank you for your attention.



#### www.districtenergy.org

#### **Rob Thornton**

rob.idea@districtenergy.org

+1-508-366-9339