

Materials will be available at: www.eesi.org/022621camp Tweet about the briefing: #eesitalk @eesionline

CONGRESSIONAL BRIEFING

Congressional Climate Camp #2: Federal Policies for High Emitting Sectors

Briefing Series: Congressional Climate Camps

Friday, February 26, 2021

About EESI...

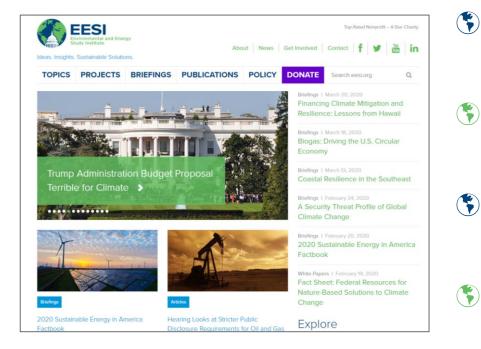
) NON-PROFIT

Founded in 1984 by a bipartisan Congressional caucus as an independent (i.e., not federally-funded) non-profit organization

💲 NON-PARTISAN

Source of non-partisan information on environmental, energy, and climate policies

S DIRECT ASSISTANCE


In addition to a full portfolio of federal policy work, EESI provides direct assistance to utilities to develop "on-bill financing" programs

SUSTAINABLE SOCIETIES

Focused on win-win solutions to make our energy, buildings, and transportation sectors sustainable, resilient, and more equitable

...About EESI

HILL BRIEFINGS

Video recordings and written summaries of Congressional briefings

CLIMATE CHANGE SOLUTIONS

Bi-weekly newsletter with all you need to know including a legislation tracker

SOCIAL MEDIA (@EESIONLINE)

Follow us on Twitter, Facebook, LinkedIn, Instagram, and YouTube

FACT SHEETS

Timely, science-based coverage of climate and clean energy topics

EESI PRESENTS

CLIMATE CAMP II

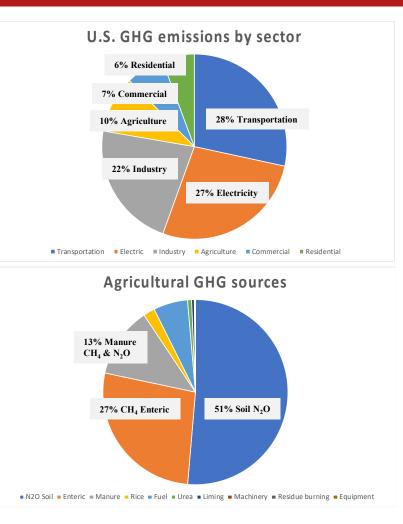
FRIDAY, FEBRUARY 26 | 2 PM EST FEDERAL POLICIES FOR HIGH EMITTING SECTORS

@EESIONLINE

College of Agriculture and Life Sciences

Regenerative Agriculture and Greenhouse Gas Mitigation

Dr. Christina Tonitto, Dr. Peter Woodbury, Dr. Dominic Woolf


Cornell University

February 26, 2021

Overview

- Greenhouse Gas (GHG) Emissions from Agriculture
- Conventional vs. Regenerative Agriculture
- Agriculture and GHG Mitigation
- Policy Considerations
- Questions?

Greenhouse Gas Emissions from Agriculture

- Agriculture causes 10% of total U.S. GHG emissions.
- **Nitrous oxide** (N₂O) is largest component of agricultural GHG emissions. Agriculture contributes most of U.S. N₂O emissions.
- Reducing Nitrous oxide is a key potential benefit of improved agricultural management.
- Methane (CH₄) is second largest agricultural GHG. Animal agriculture is a dominant source of CH₄ emissions in the U.S.

Conventional vs. Regenerative Agriculture

Historic Midwest U.S. Ecosystems

Restored Wetland Dixon Waterfowl Refuge, Illinois

Restored Prairie Dixon Refuge, Illinois

Images: The Wetlands Institute

Conventional Agricultural Practices

Bare fallow and tillage

Tile drainage

Images: Mark David

Cornell University

Conventional Agriculture and Nutrient Pollution

Eutrophication and toxic algal blooms

Hypoxia: Gulf Coast Dead Zone Average size: 5,408 square miles

Images: NASA

Conventional Agriculture and Soil Erosion

Natural Soil Erosion

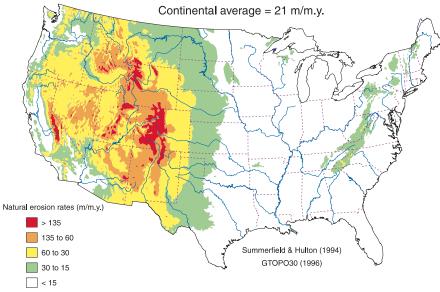


Figure 6. Estimates of average natural erosion (denudation) rates inferred from GTOPO30 area-elevation data and global fluvial erosion-elevations relations from Summerfield and Hulton (1994). Mean rate of denudation for the entire area of the contiguous United States is ~21 m/m.y.

Cropland soil erosion

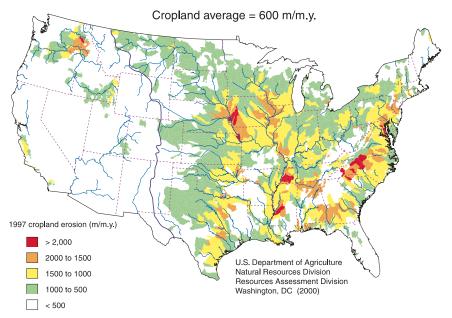


Figure 8. Rates of cropland erosion derived from estimates by the Natural Resources Conservation Service using the Universal Soil Loss Equation, and scaled to a farmland average of 600 m/m.y. The solid blue line is the western edge of the North American craton, here defined as the margin of the Great Plains physiographic province. Areas of arable land are largely confined to cratonic regions under 1 km in elevation.

Wilkinson and McElroy. 2007. Geol. Soc. Am. Bull.. 119(1/2):140-156

Implementing Regenerative Practices


Cover bare soils with plants

- Increase system productivity
- Increase soil organic matter (SOM) from increased plant residues
- Active root zone retains nutrients, increases infiltration, reduces erosion and improves soil physical structure

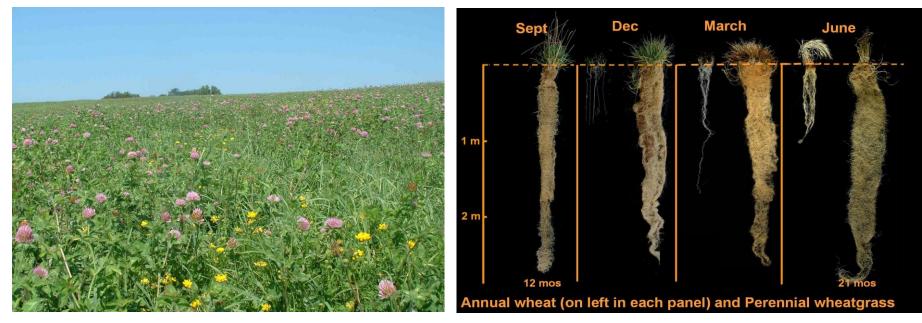
Diversified rotations to cover bare soils

- Cover crops (retain nutrients)
- Legume crops (nitrogen fixation)
- Perennial rotations (deeper, denser roots)

No-till to reduce runoff and erosion

Regenerative Agriculture: No-Till and Soil Health

Reduce soil erosion; improve soil structure, water infiltration and water retention


No-till planting

Regenerative Agriculture: Perennial Systems

Continuous plant cover; reduce soil erosion; improve soil structure, water infiltration, soil moisture, and nutrient use efficiency

Perennial grasses Image: Jennifer Blesh Perennial grains Image: Jerry Glover

Agriculture and GHG Mitigation: Scale of Offsets

FAST-GHG: Greenhouse Gas Accounting Tool

U.S. commodity crops:

• corn, soybean, wheat

Management practices:

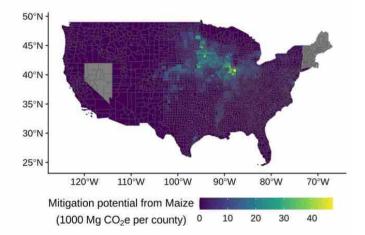
- Cover crops
- No-till, reduced tillage
- Nitrogen management

Time scale:


• 100-year accounting framework

Accounts for:

- Change in nitrous oxide (N₂O) emissions, carbon dioxide (CO₂) emissions, and soil organic carbon (SOC) sequestration
- Leakage
- Permanence

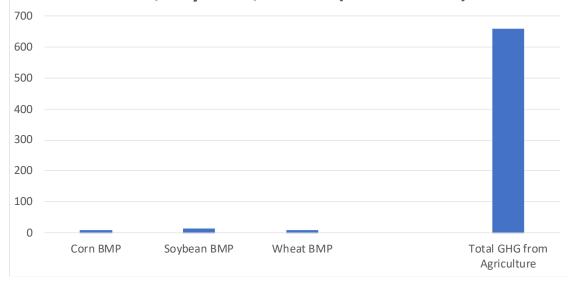

GHG Mitigation Potential for Corn

Corn soil health BMPs

Total avoided net GHG per county

Total avoided emissions per county

FAST-GHG tool estimates corn best management practices (BMPs) avoid a total of 8.3 Million Metric Tons (MMT) CO_2e


FAST-GHG (Woolf, Woodbury, Tonitto 2020)

Regenerative Agriculture and GHG Mitigation

Annual reduction of net GHG from improved management of commodity crops in 2018:

- 5-10% reduction of national agricultural emissions.
- <1% of total national emissions.
- Reduction results from regenerative agricultural practices and improved nitrogen management.

GHG offset from BMP across harvested corn, soybean, wheat (MMT CO2e)

Policy Considerations

Regenerative Agriculture and GHG Mitigation

The main benefit is to maintain the soil resource and improve water quality:

- Add soil organic carbon.
- Retain nutrients.
- Reduce soil erosion.
- Improve soil structure and water management.

A smaller co-benefit is to mitigate GHG emissions:

Non-reversible GHG benefits from reducing excess nitrogen inputs.

- Reduced nitrous oxide (N₂O) emissions.
- Reduced carbon dioxide (CO₂) and N₂O emissions from nitrogen fertilizer production.

Reversible GHG benefit from increased soil organic carbon accumulation.

Regenerative Agriculture and GHG Mitigation Accounting

Permanence: We must account for the reversibility of soil organic carbon.

- Soil organic carbon accumulation saturates after 20-30 years of regenerative management.
- Regenerative agricultural practices must be continued indefinitely to retain this accumulated soil carbon, otherwise it can be lost.
- Cost of long-term commitment to improved practice.

Regenerative Agriculture and GHG Mitigation Accounting

Risk of reversal in practice to quantify soil organic carbon benefits

- Policy should factor in reversibility.
- Reversible benefits (increased soil organic carbon) are riskier than non-reversible benefits (reduced nitrous oxide or carbon dioxide emissions).
- Long time scales, such as 100-years, are important because climate change is a long term process.

Regenerative Agriculture and GHG Mitigation Accounting

Leakage: Net GHG emissions resulting from a change in yield must be accounted for.

- Yield change has large impact on net GHG emissions.
- Leakage quantification:
 - Yield change due to management
 - Extensification vs. Intensification
 - Carbon cost of converting natural lands to agricultural production
 - Carbon benefit if land removed from production
- Policy assessment must account for leakage.

Managing Landscapes to Increase Carbon Storage Reduced demand for current commodity crops

Perennial systems

- Improved perennial forage and managed grazing
- In the future, possibly perennial grains
- 2nd generation biofuels and bioenergy

Dietary changes

- Reduced animal product consumption
- 'Manufactured proteins'

Increased demand for non-crop ecosystem services from landscapes

- Water quality
- Flood mitigation
- Wildlife habitat and recreation

Motivating Improved Agricultural Management

Payments for Ecosystem Services (PES):

Payment for practice – Challenging to quantify benefits

- Estimate benefits based on long-term research studies
- Estimate benefit averaged over many farms
- Proven feasible for implementation

Payment for outcomes – Challenging to verify benefits

- On-farm monitoring can cost more than the payment amount.
- Modeling requires trained experts and sufficient on-farm data.

Reversibility and leakage affect both practice or outcomes based PES.

Summary

Net GHG emissions reduction

• Focus on reducing fossil fuel use across all sectors.

Regenerative agricultural practices

- Maintaining the soil resource and improving water quality are the main benefits.
- GHG mitigation is a co-benefit.

Agricultural GHG emissions assessment

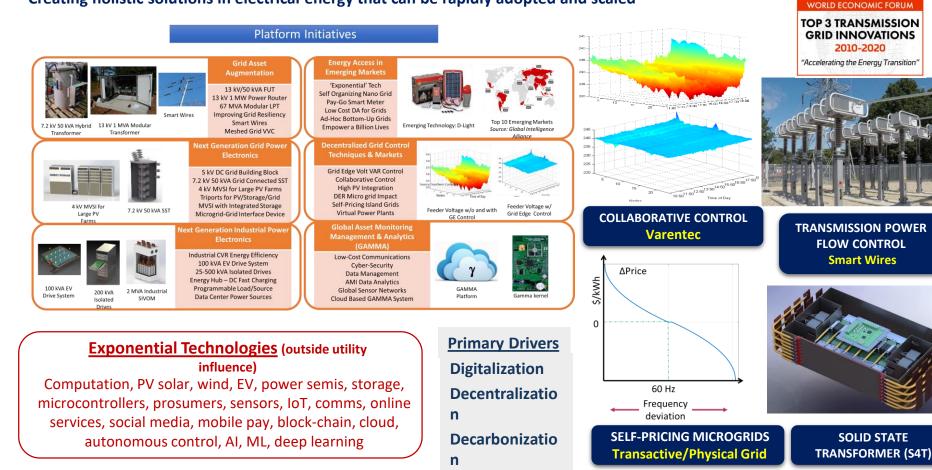
- Include leakage and permanence.
- Nitrous oxide and methane are the main GHGs.
- Focus on permanent rather than reversible reductions in GHG emissions.

Carbon-rich landscapes

- Farmer access to improved practice
- Shift in crop demand
- Accounting for ecosystem benefits (regulatory & market approaches)

www.nas.edu/gridmod

Reducing Emissions from the Electricity Grid


EESI Congressional Camp #2 Prof Deepak Divan, Center for Distributed Energy, Georgia Tech Feb 26, 2021

GT Center for Distributed Energy

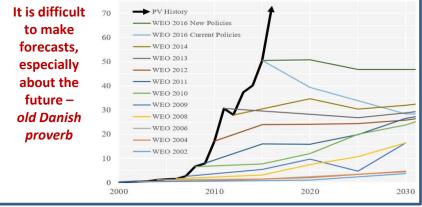
cde.gatech.edu

Georgia Center for Tech Energy

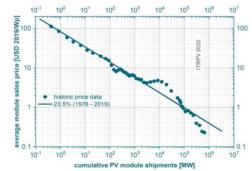
Creating holistic solutions in electrical energy that can be rapidly adopted and scaled

Reducing Grid Related Emissions

- **Opportunity:** Electricity generation (coal, gas) accounts for 26.9% of US emissions, transportation 55.1%, buildings and industry 35% key drivers for new solutions are lower cost and emissions
- Zero Carbon Resources: Hydro, nuclear, wind and PV future technologies include clean fuels (e.g. hydrogen) and SMR
- **Resource Adequacy:** YES (100 mi x 100 mi PV farm in Arizona could, in principle, meet US annual energy needs)
- **Challenge:** coordinating time and location of generation and consumption (over milliseconds to seasons all over the grid)
- Attributes: dispatchability, fast-ramping, spinning reserve
- **Enablers:** long/medium duration energy storage; AC & DC transmission; power electronics; ICT and cyber; ultra-automation; microgrids; carbon capture & sequestration
- **Approach:** Centralized generation AND distributed generation (microgrids) together meet reliability, resiliency and cost goals
- New Paradigm (?): reliability & resiliency from the grid edge; affordability & sustainability from bulk PV/wind/hydro/other <u>Grid</u>


Centralized, Passive & Rigid Decen

Decentralized, Dynamic & Resilient



In 2000, IEA forecast for 2030 → RE 4.4% of total In 2014, RE was 27.7% of total, 58.5% of new build

In GW of added capacity per year - sources World Energy Outlook and PVMA

2019: PV + 4 hours storage: \$32/MWHr

Fast Growing Sectors are Transforming the Grid

PV and Wind Farms

- PV and wind represent fast global growth (120+160) GW/yr
- With storage, shows much lower LCOE and better dispatchability
- Needs transmission to connect load centers with generation

DC Fast Charging (DCFC)

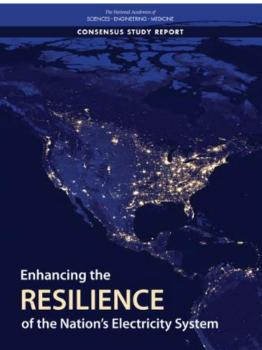
- 125 million EVs by 2040, buses, trucks, semis all going electric
- DCFC at 100 kW to 1 MW will stress the grid (peak load 1000 GW)
- Significant coordination with grid edge resources will be needed

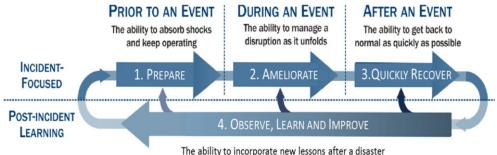
Energy Storage

- Fast growth for modular battery energy storage 1100 GW by 2030
- Hydro to pumped hydro conversion and CAES offer central storage
- Clean fuels hydrogen, ammonia offer long duration energy storage

Community Resiliency Microgrids

- Hurricanes, wildfires & ice-storms show need for grid edge resiliency
- High cost, complex integration with grid operations, poor scaling
- Will reshape the design of the future grid, technology/cost challenges




Intersection of forward-leaning incentives and 'exponential' technologies hold the key to this transformation

Recent NASEM Reports - Resilience

Recent Events in Texas <u>Again</u> Emphasize Need for Resilience

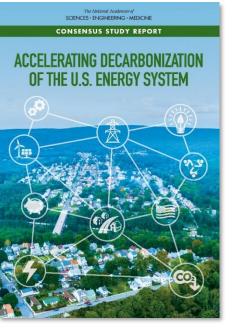
2019

The ability to incorporate new lessons after a disaster and minimize the risks associated with future events Center for

Georgia

Tech

Recommendation: The Department of Energy and Department of Homeland Security <u>should jointly establish</u> <u>and support a "visioning" process</u> with the objective of systematically imagining and assessing plausible large-area, long-duration grid disruptions [...]


Recommendation to the electric power sector and DOE: The owners and operators of electricity infrastructure should work closely with DOE in <u>systematically reviewing previous</u> <u>outages and demonstrating technologies, operational</u> <u>arrangements, and exercises that increase the resilience of</u> the grid

Recent NASEM Reports - Decarbonization

Committee asked to produce two reports that evaluate the status of technologies, policies, and societal factors needed for decarbonization and recommend research and policy needs.

This first report focuses on federal actions over the **next ten years** to put the U.S. on a **fair and equitable path to net-zero in 2050**.

nap.edu/decarbonization 2021

- Set energy standard for electricity generation to reach 75% clean electricity by 2030 and net-zero emissions by 2050.
- Enact congressional actions to advance clean electricity markets, and to improve their regulation, design, and functioning.
- Set national zero-emissions vehicle standards and manufacturing standards for zero-emissions appliances.
- Facilitate new transmission infrastructure by amending Federal Power Act and Energy Policy Act.
- Triple federal investment in clean energy RD&D, including funds for social science research.

Plan, permit, and build critical infrastructure

Produce carbon-free electricity Electrify energy services in transportation, buildings, and industry

The Future of Electric Power in the US...new NASEM report

nas.edu/gridmo 2021 Increasing automation and decentralization

572

A vision for the future - a network

of integrated microgrids that can

monitor and heal itself

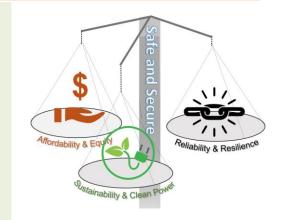
Wind fa

2008 Macmillan Publishers Limited. All rights res

Can shut off in response to

Execute special protection schemes in microseconds

zenerated at off


nergy from small generators

and solar panels can reduce overall demand on the grid.

requency fluctuations.

The system is on the cusp of fundamental transformation, many elements of which are not under industry control.

We can identify drivers of future change, but how they will manifest is uncertain – and it will be different in different parts of the country

Grid of the future

entral nowe

nlant

Demand management

Use can be shifted to off-

eak times to save money

turbances, and can sig

The Future of Electric Power in the US – NASEM Report

Paraphrased Recommendation 5.1: To meet the challenge of dramatically lowering U.S. CO₂ emissions, there is a need to develop: generation technologies with zero direct CO₂ emissions; low-carbon technologies with high dispatchability and fast ramping capabilities; storage systems for multi-hour, multiday and seasonal time-shifting; power electronics to enable real-time control of the grid.

Paraphrased Recommendation 5.2:

Developments in rapidly growing technologies, such as PV, wind, EV, and energy storage, suggest a new paradigm may be rapidly emerging which is more modular, distributed and edge-intelligent, and which may be able to compete with and outperform the existing grid paradigm in terms of sustainability, reliability, resilience, and affordability.

Additional findings and recommendations:

- Decarbonize the U.S. economy, <u>both</u> by transitioning power generation to low or zero-emission sources and by making greater use of decarbonized electricity as a substitute for fossil fuels in transportation, buildings and industry.
- <u>Grid stability challenges</u> arising from high penetration of nondispatchable sources of generation, such as wind and solar, need to be addressed.
- Addressing nearly all of the fundamental challenges for the grid of the future—from the integration of renewables to deep decarbonization—requires innovation
- The country's investment in innovation is far below what is needed to match the scale of the challenge and what's feasible - <u>At least double public expenditure on innovation</u>, <u>from states and mainly federal government</u>

NASEM Grid Report – Key Technology Recommendations Tech

Clean Generation and Commercialization

- Develop generation, storage, and distributed energy technologies with no emissions.
- Government and Industry collaborate to develop, fund and de-risk new and critical technologies essential to the future grid.
- Report also recommends tripling federal investment in RD&D

Communication, Automation, and Simulation

- Develop secure and reliable ICT technologies to support millions of grid connected devices.
- Develop technologies to enable a high-level of automation in a flexible & resilient system.
- Develop advanced *inter-compatible* simulation tools to analyze evolving grid architectures.
- Explore the use of large field experiments for new grid architectures

Develop Workforce of the Future

• Fund training and retraining of the current and future workforce.

Conclusions

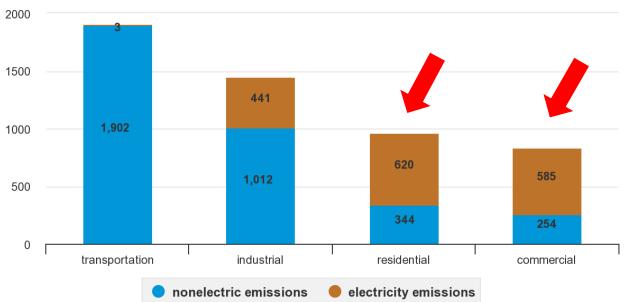
- Georgia Tech Energy
- Achieving low-emissions has always been seen as a trade-off, with higher cost and poor reliability

 resulting in the disruption of the electricity system that has been at the heart of human progress
- The last 20 years has seen unprecedented and rapid change in the energy industry at a time when climate change (and related grid resiliency) has also become a pressing concern
- 'Exponential' technologies with rapidly decreasing prices, driven by forward-leaning incentives and policies, have transformed the energy landscape with renewables at grid parity in many places
- There is an opportunity to transform the system to a low-carbon system, that is also reliable, resilient and affordable requires fundamental rethinking, innovation, policies & investments

Thanks to NASEM staff and the committee that authored 'The Future of Electric Power in the US' NASEM report

Buildings Sector

EESI February 26, 2021

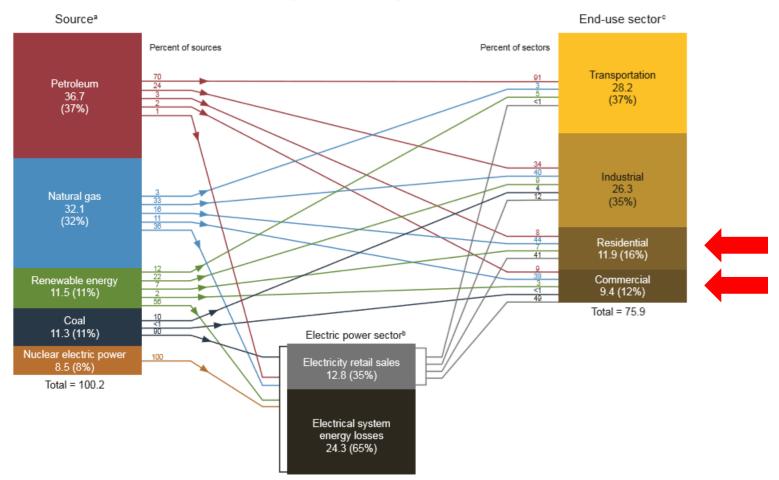

Buildings Contribution to GHG Emissions

- Significant: 12% direct combustion, 38% including power use
- Drivers include building age, code/efficiency, size
- Buildings have carbon impact beyond energy: waste, water, transportation, materials
- Both Construction phase + Operations phase matter

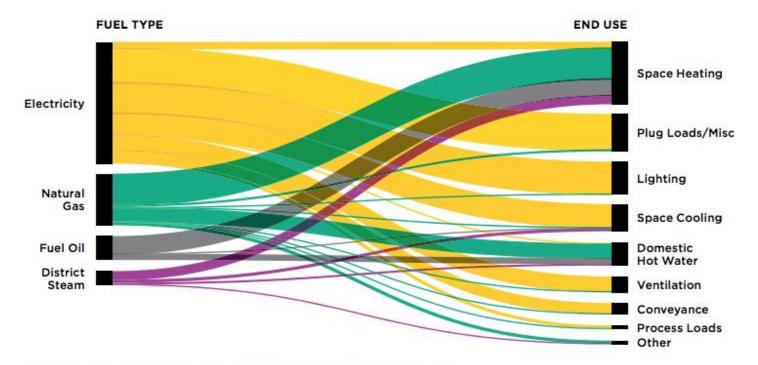
Buildings as End Use Sector

Carbon dioxide emissions by end-use sectors, 2019

million metric tons of carbon dioxide

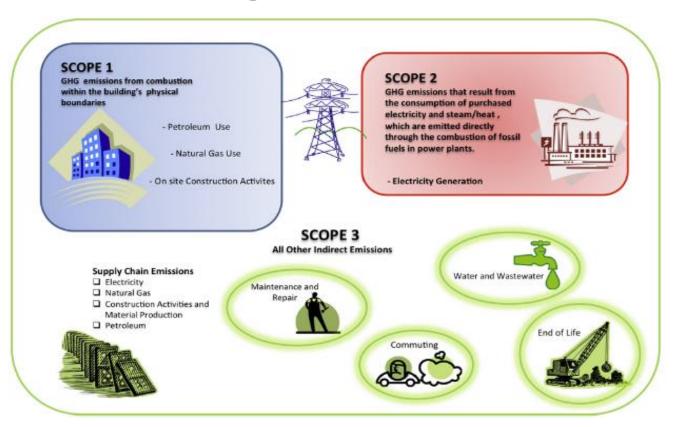

Note: nonelectric emissions are from primary energy consumption; electric emissions are from generation of electricity

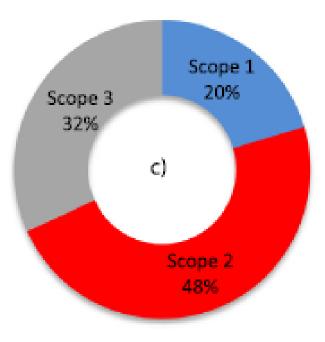
purchased from the electric power sector.


eia Source: U.S. Energy Information Administration, Monthly Energy Review, Tables 11.1 to 11.6, July 2020, preliminary data

U.S. energy consumption by source and sector, 2019

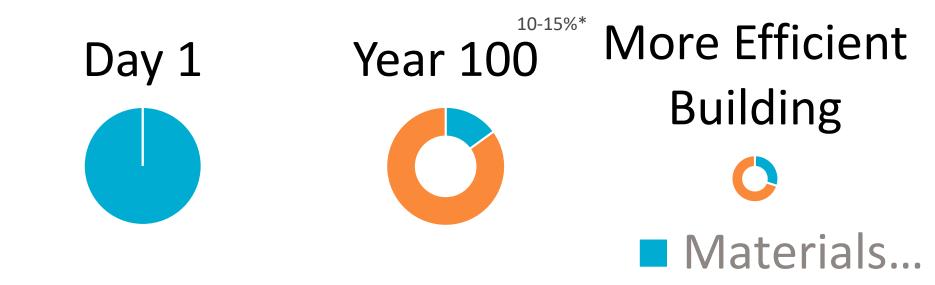
(Quadrillion Btu)


Where is the energy demand?

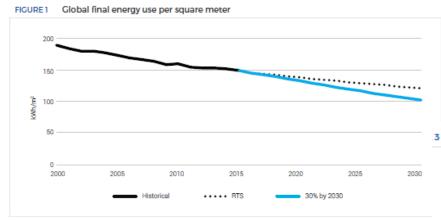

Figure 4: Flow of Fuel Types to End Use (LL84 and LL87 data) 16

Electricity represents more than half of the audited source energy, while space heating, fueled mainly by natural gas, represents the largest end use. (Urban Green Council)

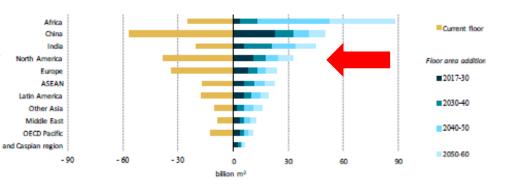
As grids get cleaner, scope 3 emissions become more significant



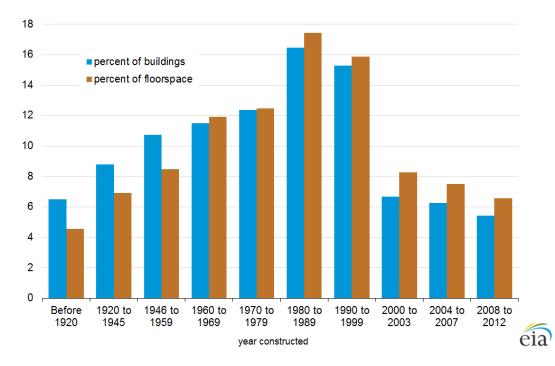
Building Life Cycle Carbon Footprint


Source: Onat et al, Scope-based carbon footprint analysis of U.S. residential and commercial buildings (2013).

Building Carbon footprint from construction to end of life


* B. Lippke et al "Life-Cycle Environmental Performance of Renewable Building Materials" June 2004 Journal of Forest Products

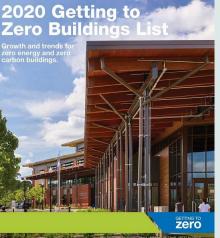
Buildings are more efficient, but footprint is growing

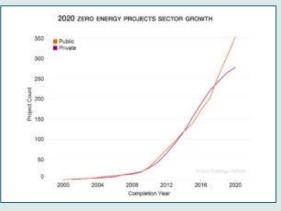

Notes: EJ = exajoules; kWh/m2 = kilowatt-hours per square metre: RTS = Reference Technology Scenario. Source: IEA (2017), Energy Technology Perspectives 2017, IEA/OECD, Paris www.iea.org/etp/.

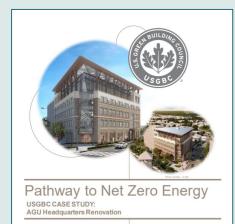
Floor area additions to 2060 by key regions

D Pacific includes Australia, New Zealand, Japan and Korea; ASEAN = Association of Southeast Asian Nations. (2017), Energy Technology Perspectives 2017, IEA/OECD, Paris, www.iea.org/etp

Buildings aren't getting younger


- About half of buildings in 2012 were built before 1980
- Pre-1980/1990 buildings less impacted by energy codes
- Poor insulation, envelopes, inefficient systems


The good news: We can do better


nbi new buildings

2020 Getting to

Growth and trends zero energy and zer carbon buildings.

Existing buildings achieving LEED O+M contributed:

- 50% less GHGs from water use
- 48% less GHGs from solid waste
- 5% less GHGs from transportation

Source: UC Berkeley-California Air Resources Board

Policy Approaches to Decarbonizing Buildings

- New construction
- Retrofits
- Workforce
- RD&D, technology

Administration goal: retrofit 6 million buildings

Federal Buildings: Opportunity to Lead by Example

- Invest in cost-effective energy improvements, boost resilience & health
- Appropriations & funding including supplemental, stimulus
- Establish buildings goals and direction e.g. *GREEN Building* Jobs Act (116-S.5001)
 - Energy and water efficiency, GHG intensity
 - Net Zero, deep retrofits, incorporate ZEV charging
- Leverage private sector finance e.g., Open Back Better (116-H.R. 7303/S. 4060) using AFFECT program

Commercial Buildings (including public)

- Appropriations & funding including supplemental, stimulus
- Use DOE programs to advance on all fronts:
 - workforce, RD&D, deployment, energy codes, Better Buildings
- Tax incentives e.g., GREEN Act (H.R. 848)
- Leverage private sector finance e.g., *Open Back Better* (*H.R.* 7303/S. 4060) through State Energy Program
- Invest in public buildings improvement e.g., *Energy Efficiency Conservation Block Grants* program
- State Energy Program numerous activities, proposals

Schools

- Boost U.S. Dept. Education ability to support healthy, green, low-carbon schools
- Appropriations & funding including supplemental, stimulus – e.g., *Reopen & Rebuild America's Schools Act (H.R. 604/S.* 96)
- Energy Efficiency grants e.g., 116-H.R. 2-Sec. 33222
- Leverage private finance e.g., Open Back Better
- Technical assistance on school facilities improvements through DOE, EPA, State Energy Offices, State Departments of Education

Residential Buildings


- Appropriations & funding including supplemental, stimulus e.g., Housing is Infrastructure Act (in 116-H.R. 2)
- Use DOE programs to advance on all fronts:
 - workforce, RD&D, deployment, energy codes, Better Buildings
- Use HUD, USDA programs impacting housing e.g., Energy Efficient Neighborhoods Act
 - Establish minimum code
 - Above-code incentive or requirement
- Weatherization Assistance Program (WAP)
- Workforce training e.g., HOPE for HOMES
- Tax incentives e.g., GREEN Act
- Rebates e.g., HOMES Act

Specific technologies, approaches

- Beneficial electrification
- Heat pumps
- Solar water heating
- Thermal storage
- Battery storage with renewable energy generation
- LED lighting
- Integrating ZEV needs
- Reducing construction phase GHG impacts
- Reducing embodied carbon in materials
- Many more


RD&D Example: Grid-Interactive Efficient Buildings

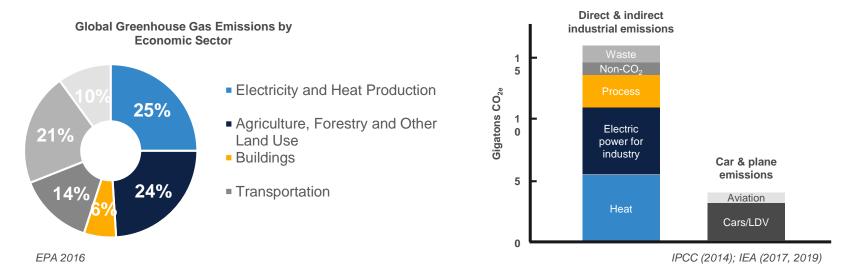
- Buildings that work with the grid
- Smart, connected technology
- Flexible demand, reduced peak
- Integration
- GridOptimal emerging standard

Buildings ARE Infrastructure

• Part of the system – with huge opportunities to improve resilience, health, and quality of life while reducing GHGs

Buildings Sector

- Liz Beardsley
- ebeardsley@usgbc.org
- EESI February 26, 2021



Clean Industry for America: Options, Costs, and Policy Considerations

Dr. S. Julio Friedmann, Center on Global Energy Policy at Columbia Univ. EESI "Climate Camp" Feb 27th, 2021

Industrial heat emissions: ~10% global emissions

Can't make key climate goals without solutions

Industry emits more than transportation Heat for industry emits more than cars & planes combined

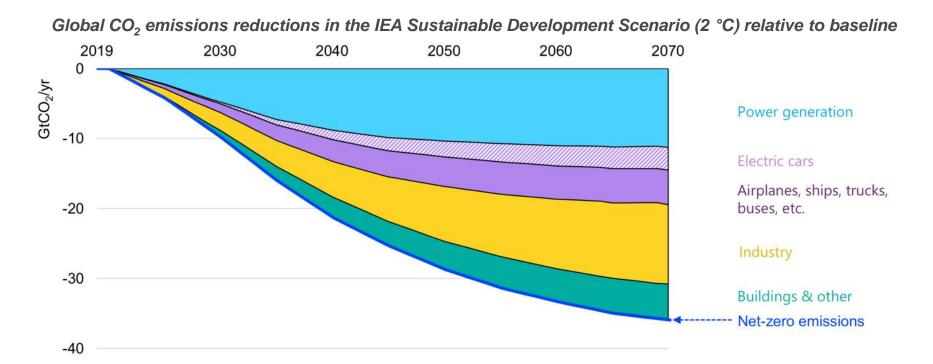
The core arithmetic of net-zero is clarifying:

All sectors All approaches

Only one way to stabilize climate: net-zero everywhere

- Any emissions anywhere add to atmospheric CO₂ concentration
- Every year of delay makes problem worse
- We haven't yet fielded solutions for about 50% of the portfolio

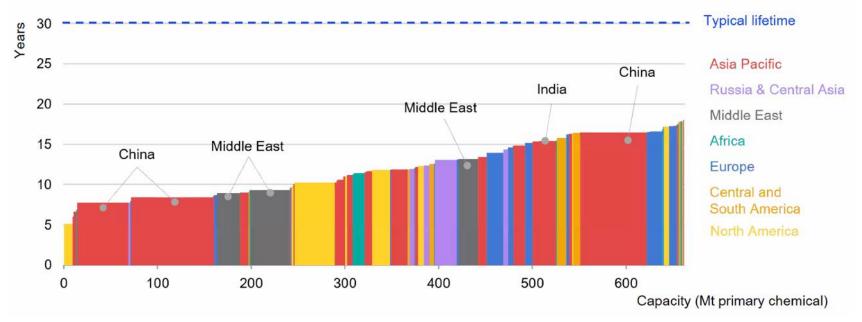
For net zero: CO_2 emissions - CO_2 removals = 0


- Any residual emissions must be balanced by removal
- Likely need 10 Gt/y CO₂ removal by 2050
- Any delay or failure requires more CO₂ removal

Carbon from the earth must be returned to the earth

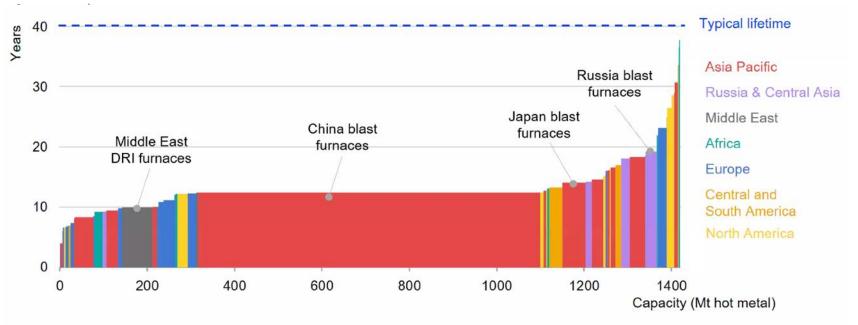
- Natural systems must return to balance
- Biosphere has limited capacity
- Risk of return is getting worse

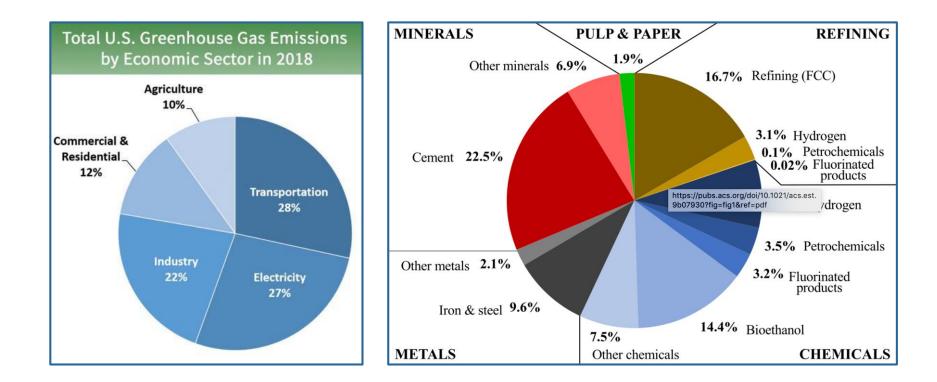
CO₂ return to the geosphere anchors the net-zero global economy


Industry is huge and hard Trade exposed, few technology options, expensive

Source: IEA 2020

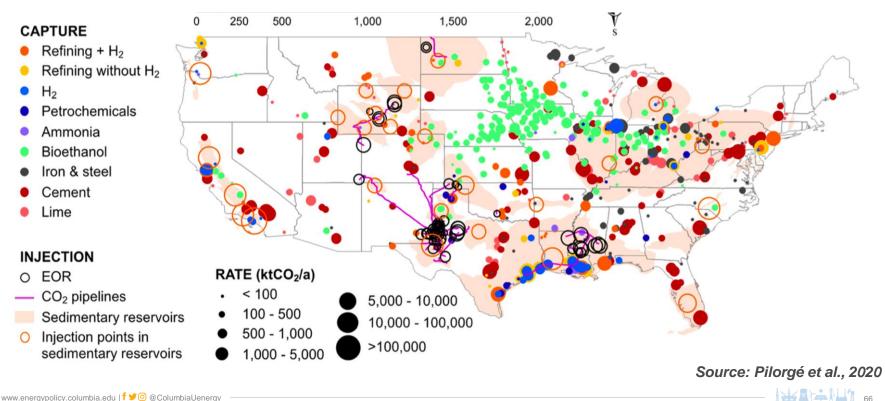
CCUS key benefits: saves time, saves money, reduces risk Can decarbonize existing assets without waiting for retirement


Age profile of primary chemical production facilties



CCUS key benefits: saves time, saves money, reduces risk Can decarbonize existing assets without waiting for retirement

Age profile of primary steelmaking from iron ore (mostly blast

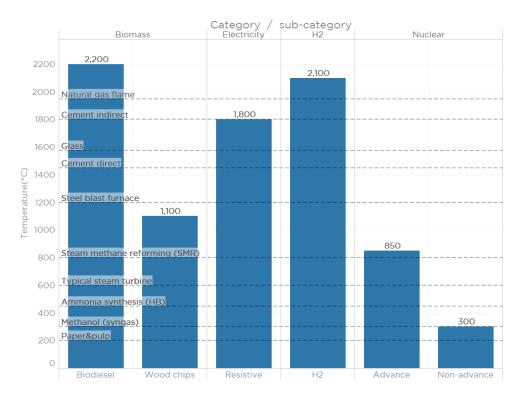


US industrial emissions by sector

US industrial source locations by sector

Many are near viable CO₂ storage resources

Low C Heat: Applications & Sources


Not that many options for high-quality, large volume heat

Hydrogen

- Green: electrolysis of water from zero-C power
- Blue: From natural gas, with CCS (90%)
- Gray: From natural gas, but not low-C **Electricity**
- Must be zero-C supply & 90% capacity
- Radiant & resistive heating most mature **Biomass**
- Must be low-C on a life-cycle basis
- Wood chips & biofuels most mature
- Biogas supplies are problematic

Carbon Capture

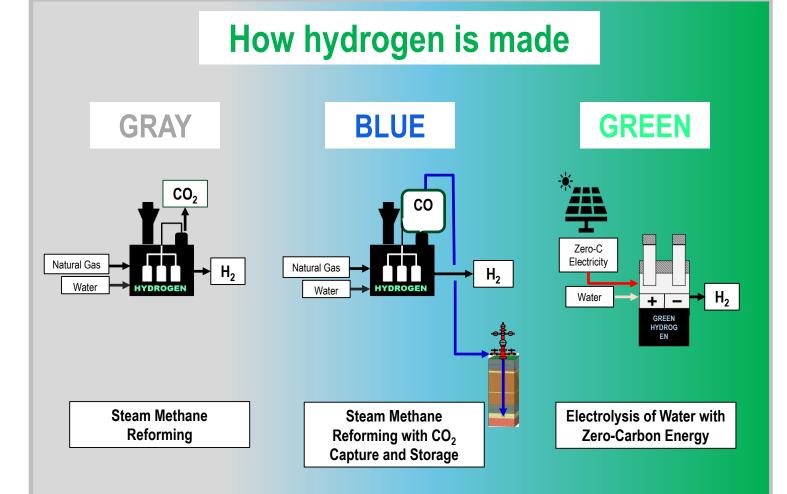
- Captures both heat and process emissions
- Lower cost than many options
- Requires CO2 storage sites & infrastructure

Hydrogen: Essential for speed, cost, and versatility The Swiss Army knife of deep decarbonization

Heavy Industry

- Replacing/decarbonizing current hydrogen production (70 Mt/y + 477 Mt/y CO₂)
- Industrial heat (cement, iron & steel, chemicals, refining, glass, ceramics, paper)

Transportation Sector


- Direct use as a fuel (heavy duty trucking; port operation)
- Feedstock to synthetic fuels (ammonia, synthetic jet fuel & methanol)

Power Sector

- Alternative power storage (like a long-duration battery) with stationary fuel cells
- Get value from power congestion & curtailment

Multi-sectoral Applications

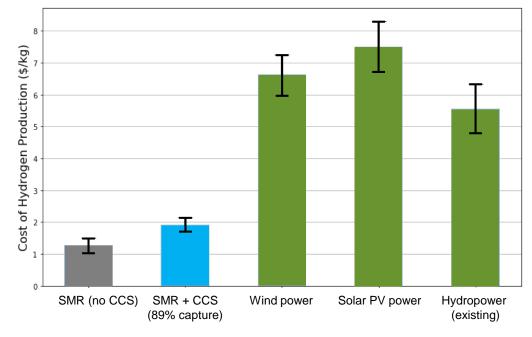
- Near-term and long-term replacement for natural gas (heat and power)
- Feedstock to a circular carbon economy (fuels, plastics, chemicals)
- CO₂ removal (biomass+CCS to hydrogen; energy for CO2 removal systems)

69

Key challenges

Cost

- Green: \$3-8/kg (55% electricity, 30% electrolyzer, 15% BOP)
- Blue: \$1.2-1.8/kg (for D, price of gas & decarb fraction)


Manufacturing limits

- No mass manufacturing: bespoke
 production
- China, Germany, Korea, Norway, Japan trying to change

Infrastructure limits

 Massive build of transmission & zero-C electricity (26,000 TWh = 530 Mtpa)

Costs of U.S. hydrogen production (\$/kg)

Cost of electricity	Capacity Factor	Cost of H ₂ (\$/kg)*
\$30/MWh	90%	\$2
\$. 5/MWh	20%	\$2

* For \$1000/kW electrolyzers

Source: Friedmann et al., 2019

Facility	H ₂ Production (tonnes/day)	H ₂ Production Process	Operational Commencement
Blue hydrogen			
Enid Fertiliser	200 (in syngas)	Methane reformation	1982
Great Plains Synfuel	1,300 (in syngas)	Coal gasification	2000
Air Products	500	Methane reformation	2013
Coffeyville	200	Petroleum coke gasification	2013
Quest	900	Methane reformation	2015
Alberta Carbon Trunk Line - Sturgeon	240	Asphaltene residue gasification	2020
Alberta Carbon Trunk Line - Agrium	800	Methane reformation	2020
Sinopec Qilu	100 (estimated)	Coal/Coke gasification	2021 (planned)
Green hydrogen			
Trondheim	0.3	Solar (!)	2017
Fukushima	2.4 (10 MW)	Solar	2020
NEOM	650	Wind + Solar	2025 (planned)

Chemicals: 3% of global CO₂ emissions Heat for chemicals: ~1.5% of global CO₂ emissions *Wide range of processes, uses, footprints, options*

Best options (cost & footprint)

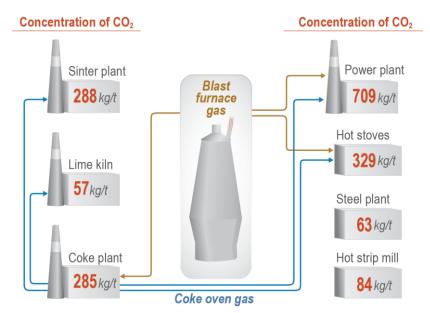
- Hydrogen (first blue H₂ then green)
- Biogas, biomethane
- Partial electrification (e.g., steam)

Other decarbonization options:

- Efficiency (large opportunity)
- Novel processes (e.g., electrolytic chemical production; CO₂ upcycling)

Grangemouth ethylene plant, Scotland

Iron & Steel: 5% of global CO₂ emissions Heat for Iron and Steel: ~2.5% of global CO₂ emissions *Requires 1200° C and continuous operation*

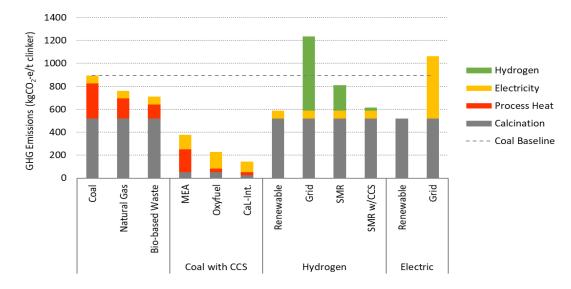

Best options (cost & footprint)

- CCS on whole system
- "Biocoke"
- Some hydrogen (Nippon Steel)

Other decarbonization options:

- Efficiency
- Modified coking
- Adopting EAF (w/ DRI & zero-C H₂)

www.energypolicy.co Novel processes (e.g., upgraded smelting, electrical reduction of ore)


Cement industry: 6% of global CO₂ emissions Heat for cement : ~2% of global CO₂ emissions *Requires 1450° C and continuous operations*

Best options (cost & footprint)

- CCS on whole system
- Biomass mix

Other decarbonization options:

- Clinker substitution
- Efficiency
- Alternative binders
- Novel processes (e.g., Ca-L, electrical decomposition)

Policy options for US low-C industrial development

Incentives

- Buy-clean procurement: cement & steel & fuels
- Tax credits: PTC/ITC for low-C hydrogen, expanded 45Q, etc.
- DOE grants: Demonstration & pilot testing
- Asset replacement assistance

Infrastructure

- CO₂ pipelines & storage facilities, hydrogen pipelines
- High-voltage transmission lines
- Port upgrades

Regulations etc.

- Emissions standards & caps (+/- trading)
- · Border tariffs vs. output-based rebates

Innovation is essential and underserved

Wage, equity & labor considerations are essential

MORE ANALYSIS IS GOOD

75

Levelized Cost of Carbon Abatement (LCCA) is an improved tool for net-zero decisions

It allows one to assess the most cost-effective way to reduce emissions

Key findings for decision-makers

- Net-zero framework requires improved methodologies focused on carbon reduction & removal.
- LCCA is keyed to **specific displacements of emissions**, which varies greatly by geography, market, technology, policy specifics, and what is displaced.
- LCCA can serve to make rigorous "**apples-to-apples**" comparisons of policies or potential investments.
- LCCA is **powerful** but is only one metric and concern.

Congressional Climate Camp Series

- MARCH 26–Lessons Learned from Past Congresses and Current Public Attitudes on Climate
- S APRIL 30--Policy for Mitigation and Adaptation Win-wins

Webcasts and written summaries available at <u>www.eesi.org</u>

Audio-only excerpts released via The Climate Conversation podcast

Fact sheets, fact sheets, web articles, and web articles

What did you think of the briefing?

Please take 2 minutes to let us know at: www.eesi.org/survey

> Materials will be available at: www.eesi.org/022621camp

Tweet about the briefing: #eesitalk @eesionline

Friday, February 26, 2021