

Localizing Sea Level Rise Projections for Decision-Makers

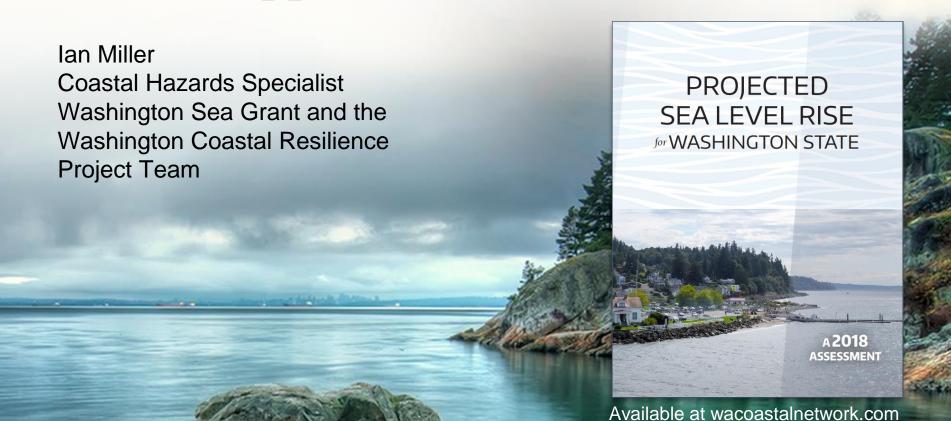
April 13, 2020

Materials will be available at: www.eesi.org/041320data

Tweet about the briefing: #eesitalk @eesionline

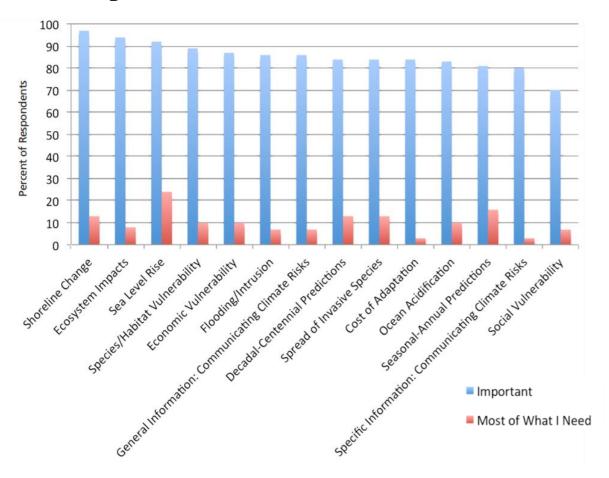
- Founded in 1984 by a bipartisan Congressional caucus.
- Now an independent, bipartisan nonprofit with no Congressional funding.
- We provide fact-based information on energy and environmental policy for Congress and other policymakers.
- We focus on win-win solutions to make our energy, buildings, and transportation sectors sustainable and resilient.

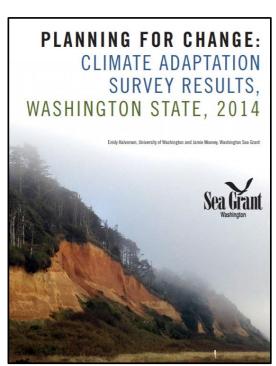
Visit www.eesi.org to:


- View videos of our Congressional briefings.
- Sign up to receive our briefing notices, and fact sheets.
- Subscribe to our newsletters, including Climate Change Solutions.

Part 1

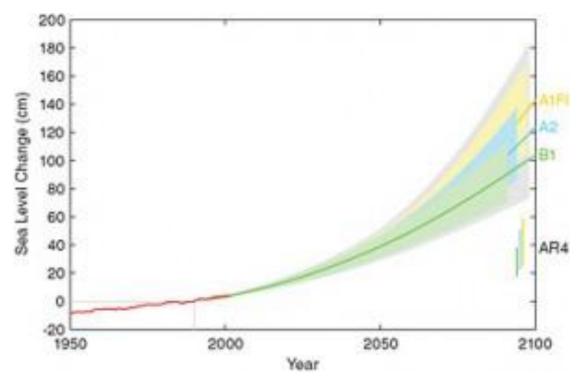
Innovations to Support Sea Level Rise Planning in Washington State

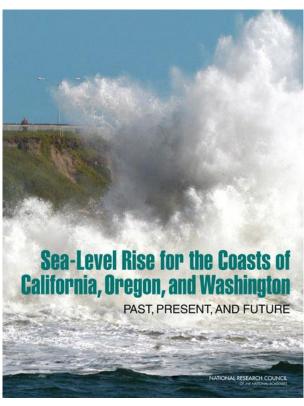

EEEI Livestream • 13 April 2020 Localizing SLR Projections to Support Decision-Makers



Washington Sea Grant is a National Oceanic and Atmospheric Administration program housed at the University of Washington. We fund and conduct marine research, education and outreach programs throughout the state to support the health and sustainable use of our marine resources.

Importance of Climate Change Impacts as Compared to Information Needed



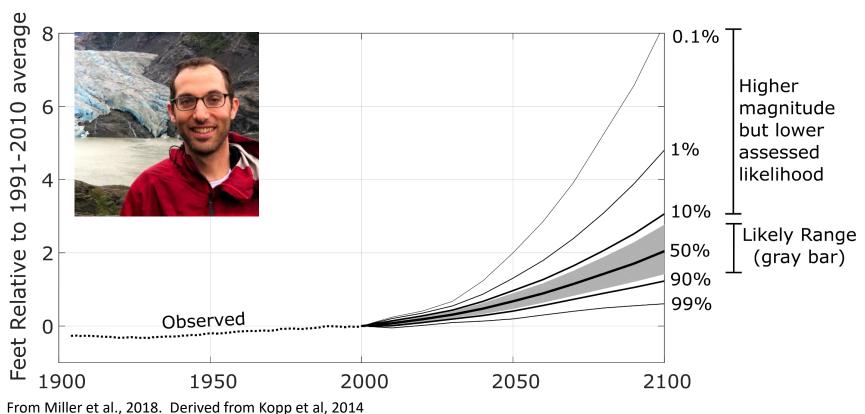

Back in 2014...

Action Gap? Introducts Level Rise Vulnerability Con Control Contro

Best Available Science: 2012

- Narrow range of uncertainty for each emissions scenario
- Not "localized" for most communities

NOAA Funded "Regional Resilience" Project

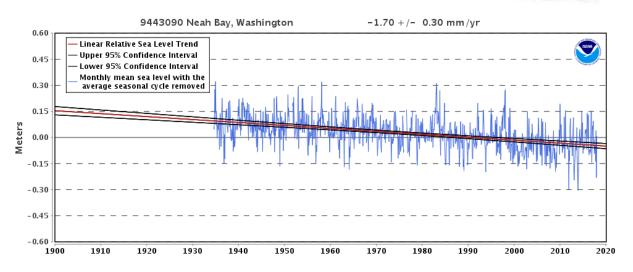


Objectives

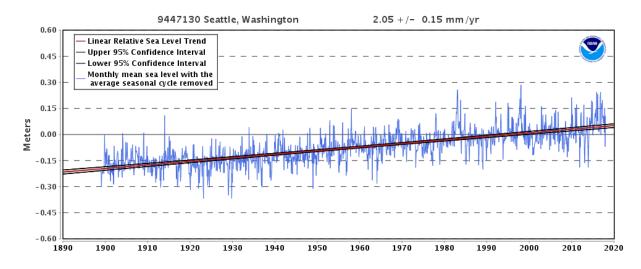
- Support an updated sea level rise and storm surge assessment for coastal Washington
- Build climate resilience principles into state agency processes and plans
- Look for resilience co-benefit from existing planning processes and nearshore investments
- Create outreach tools to facilitate implementation of resilience projects and plans

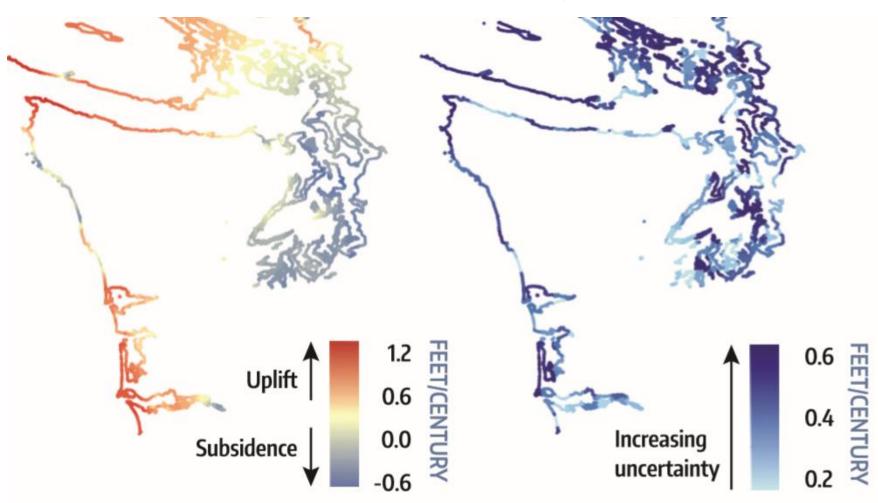
Innovation 1: Kopp's Probabilistic Framework

Washington State SL Projections for RCP 8.5



Innovation 2: Localizing


Neah Bay, WA



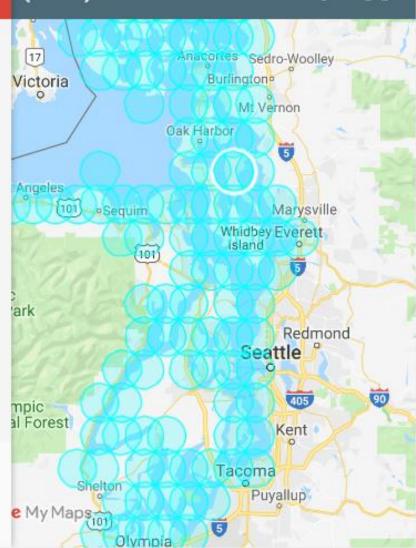
Seattle, WA

Vertical Land Movement

see spreadsheet RSLProjections_for...

s (WCRP)

name

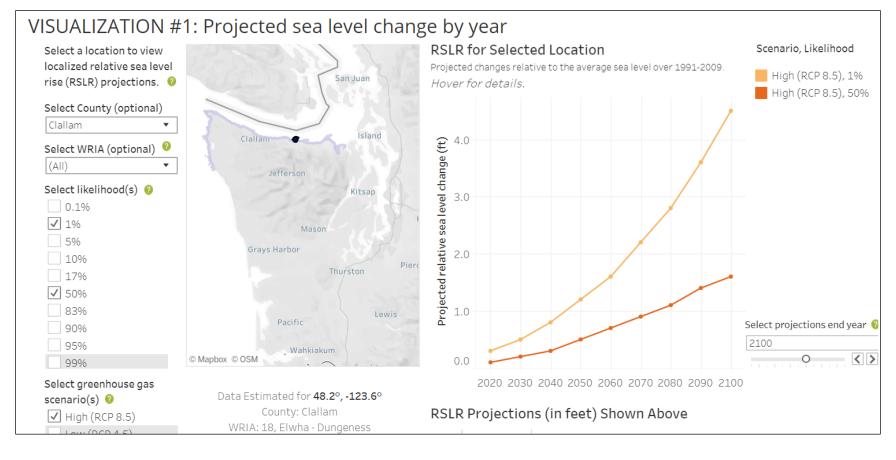

see spreadsheet RSLProjections_forLat48.2Long-122.5.xlsx

description

Developed as part of the Washington Coastal Resilience Project, the excel sheet referenced with this polygon summarizes a current assessment of sea level projections for this area

Data Download:

http://www.wacoastalnetwork.com/files/th eme/wcrp/mapdata/RSLProjections_Lat48 .2N_Long122.5W.xlsx


	Assessed Pro	bability of	Exceedance	e:						
9 year period ce	nte 99	95	90	83	50	17	10	5	1	0.1
2010	0.1	0	0	0	0.1	0.3	0.2	0.2	0.2	0.3
2010	-0.1	0	0	0	0.1	0.2	0.2	0.2	0.3	0.3
2020	-0.1	0	0.1	0.1	0.2	0.3	0.4	0.4	0.5	0.6
2030	-0.1	0.1	0.1	0.2	0.3	0.5	0.6	0.6	0.7	0.9
2040	0	0.1	0.2	0.3	0.5	0.7	0.8	0.9	1.1	1.4
2050	0	0.2	0.3	0.4	0.7	1	1.1	1.3	1.5	2.1
2060	0.1	0.3	0.5	0.6	1	1.3	1.5	1.7	2	3
2070	0.1	0.5	0.6	0.8	1.2	1.7	1.9	2.1	2.7	4
2080	0.2	0.6	0.8	1	1.5	2.1	2.3	2.6	3.4	5.4
2090	0.3	0.7	1	1.2	1.8	2.5	2.8	3.1	4.1	6.9
2100	0.3	0.8	1.1	1.4	2.2	3	3.4	3.8	5	8.6
2110	0.4	1	1.2	1.5	2.3	3.2	3.6	4.1	5.7	10.1
2120	0.5	1.1	1.4	1.7	2.6	3.7	4.2	4.8	6.7	12.2
2130	0.6	1.2	1.6	1.9	3	4.2	4.7	5.5	7.8	14
2140	0.6	1.3	1.7	2.1	3.3	4.7	5.3	6.2	9	16.2
2150	0.6	1.4	1.9	2.3	3.6	5.2	5.9	7	10.2	18.5

	Assessed Pro	obability of	f Exceedance	e:						
9 year period cent	e 99	95	90	83	50	17	10	5	1	0.1
2010	-0.1	0	0	0	0.1	0.2	0.2	0.2	0.3	0.3
2020	-0.1	0	0.1	0.1	0.2	0.3	0.4	0.4	0.5	0.6
2030	-0.1	0.1	0.1	0.2	0.3	0.5	0.6	0.6	0.7	0.9
2040	0	0.1	0.2	0.3	0.5	0.7	0.8	0.9	1.1	1.4
2050	0	0.2	0.3	0.4	0.7	1	1.1	1.3	1.5	2.1
2060	0.1	0.3	0.5	0.6	1	1.3	1.5	1.7	2	3
2070	0.1	0.5	0.6	0.8	1.2	1.7	1.9	2.1	2.7	4
2080	0.2	0.6	0.8	1	1.5	2.1	2.3	2.6	3.4	5.4
2090	0.3	0.7	1	1.2	1.8	2.5	2.8	3.1	4.1	6.9
2100	0.3	0.8	1.1	1.4	2.2	3	3.4	3.8	5	8.6
2110	0.4	1	1.2	1.5	2.3	3.2	3.6	4.1	5.7	10.1
2120	0.5	1.1	1.4	1.7	2.6	3.7	4.2	4.8	6.7	12.2
2130	0.6	1.2	1.6	1.9	3	4.2	4.7	5.5	7.8	14
2140	0.6	1.3	1.7	2.1	3.3	4.7	5.3	6.2	9	16.2
2150	0.6	1.4	1.9	2.3	3.6	5.2	5.9	7	10.2	18.5

	Assessed P	robability	of Exceedar	ice:						
.9 year period cent	te 99	95	90	83	50	17	10	5	1	0.1
2010	-0.1	0	0	0	0.1	0.2	0.2	0.2	0.3	0.3
2020	-0.1	0	0.1	0.1	0.2	0.3	0.4	0.4	0.5	0.6
2030	-0.1	0.1	0.1	0.2	0.3	0.5	0.6	0.6	0.7	0.9
2040	0	0.1	0.2	0.3	0.5	0.7	0.8	0.9	1.1	1.4
2050	0	0.2	0.3	0.4	0.7	1	1.1	1.3	1.5	2.1
2060	0.1	0.3	0.5	0.6	1	1.3	1.5	1.7	2	3
2070	0.1	0.5	0.6	0.8	1.2	1.7	1.9	2.1	2.7	4
2080	0.2	0.6	8.0	1	1.5	2.1	2.3	2.6	3.4	5.4
2090	0.3	0.7	1	1.2	1.8	2.5	2.8	3.1	4.1	6.9
2100	0.3	0.8	1.1	1.4	2.2	3	3.4	3.8	5	8.6
2110	0.4	1	1.2	1.5	2.3	3.2	3.6	4.1	5.7	10.1
2120	0.5	1.1	1.4	1.7	2.6	3.7	4.2	4.8	6.7	12.2
2130	0.6	1.2	1.6	1.9	3	4.2	4.7	5.5	7.8	14
2140	0.6	1.3	1.7	2.1	3.3	4.7	5.3	6.2	9	16.2
2150	0.6	1.4	1.9	2.3	3.6	5.2	5.9	7	10.2	18.5

		Assessed F	Probability	of Exceeda	nce:						
19 year period cente		99	95	90	83	50	17	10	5	1	0.1
2010		0.4	0	0		0.4	0.3	0.2	0.2	0.2	0.3
2010		-0.1	0	0	0	0.1	0.2	0.2	0.2	0.3	0.3
2020		-0.1	0	0.1	0.1	0.2	0.3	0.4	0.4	0.5	0.6
2030		-0.1	0.1	0.1	0.2	0.3	0.5	0.6	0.6	0.7	0.9
2040		0	0.1	0.2	0.3	0.5	0.7	0.8	0.9	1.1	1.4
2050		0	0.2	0.3	0.4	0.7	1	1.1	1.3	1.5	2.1
2060		0.1	0.3	0.5	0.6	1	1.3	1.5	1.7	2	3
2070		0.1	0.5	0.6	0.8	1.2	1.7	1.9	2.1	2.7	4
2080		0.2	0.6	0.8	1	1.5	2.1	2.3	2.6	3.4	5.4
2090		0.3	0.7	1	1.2	1.8	2.5	2.8	3.1	4.1	6.9
2100		0.3	0.8	1.1	1.4	2.2	3	3.4	3.8	5	8.6
2110		0.4	1	1.2	1.5	2.3	3.2	3.6	4.1	5.7	10.1
2120		0.5	1.1	1.4	1.7	2.6	3.7	4.2	4.8	6.7	12.2
2130		0.6	1.2	1.6	1.9	3	4.2	4.7	5.5	7.8	14
2140		0.6	1.3	1.7	2.1	3.3	4.7	5.3	6.2	9	16.2
2150		0.6	1.4	1.9	2.3	3.6	5.2	5.9	7	10.2	18.5

Tableau-based Interactive SLR Projection Tool

Take it away Nicole!

lan Miller, Coastal Hazards Specialist

Washington Sea Grant Sitting at Peninsula College Port Angeles, WA immiller@uw.edu 360 417 6460

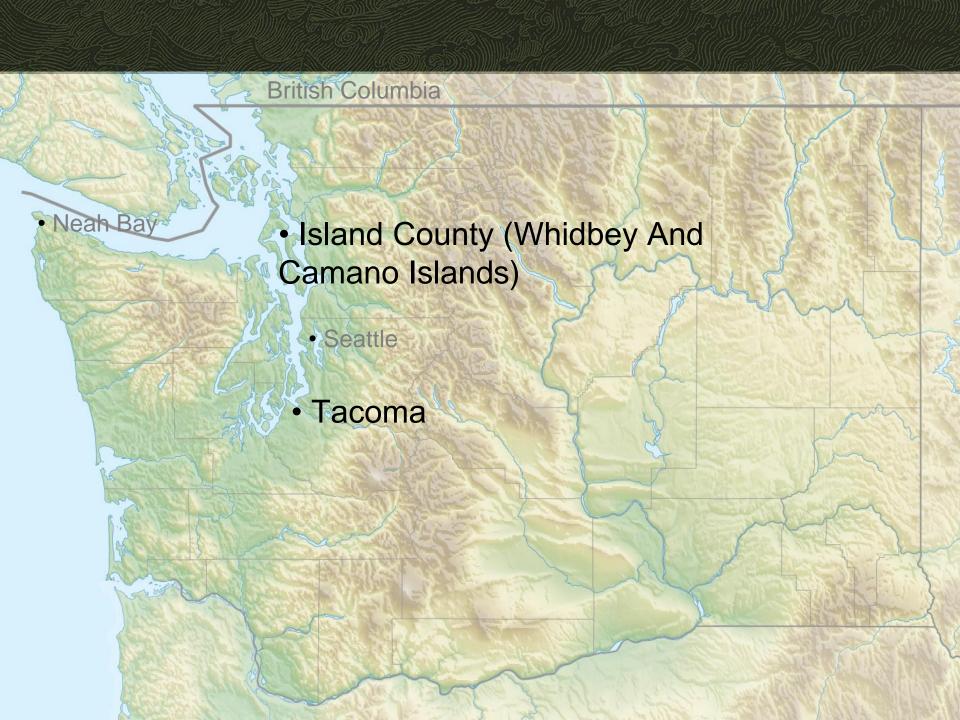
Localizing Sea Level Rise Projections for Decision-Makers

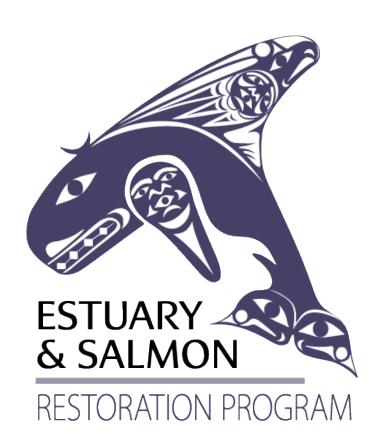
April 13, 2020
Nicole Faghin, Coastal Management Specialist
Washington Sea Grant
faghin@uw.edu

How Do we Get to Implementation?

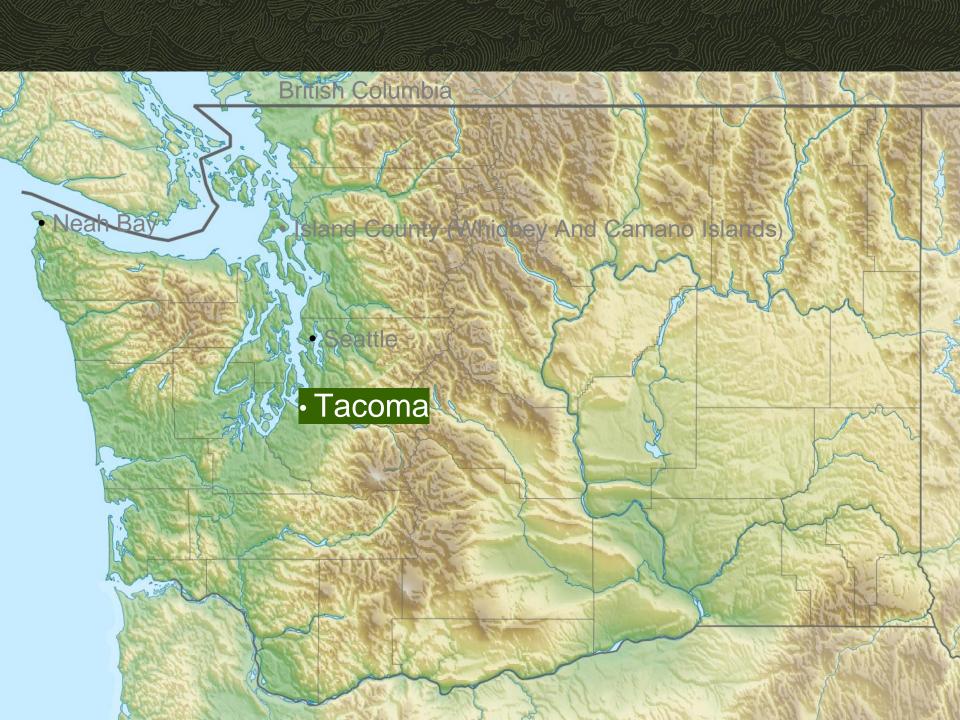
Washington Coastal Resilience Project Four Tasks

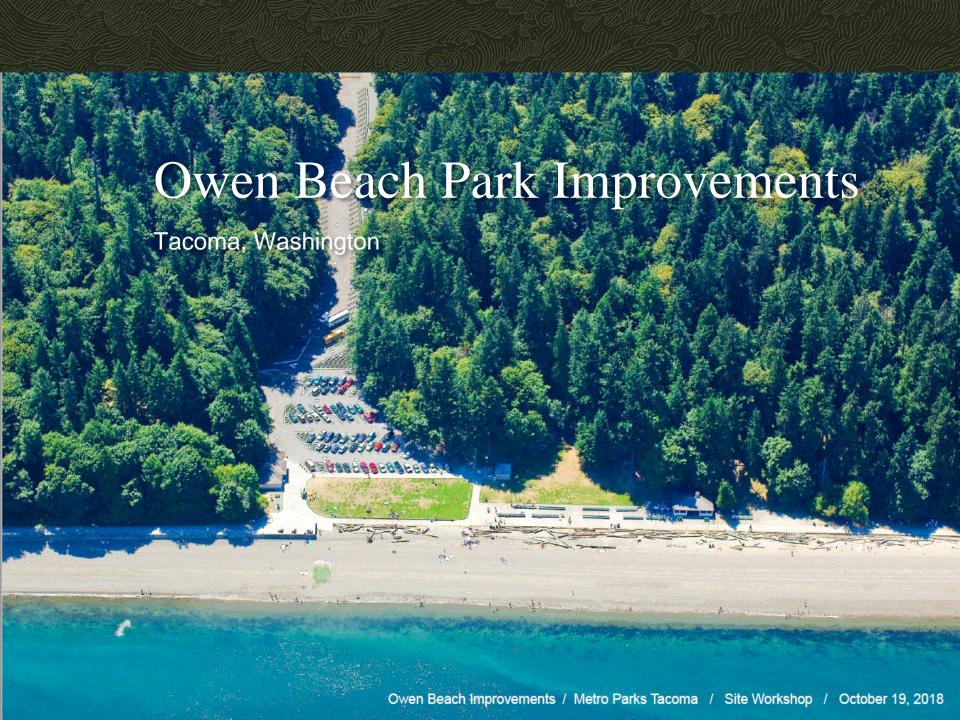
Training and Sharing


Local Experience


State Agency Guidance

Sea Level Rise Data


Goal: Rapidly increase the capacity in Washington State

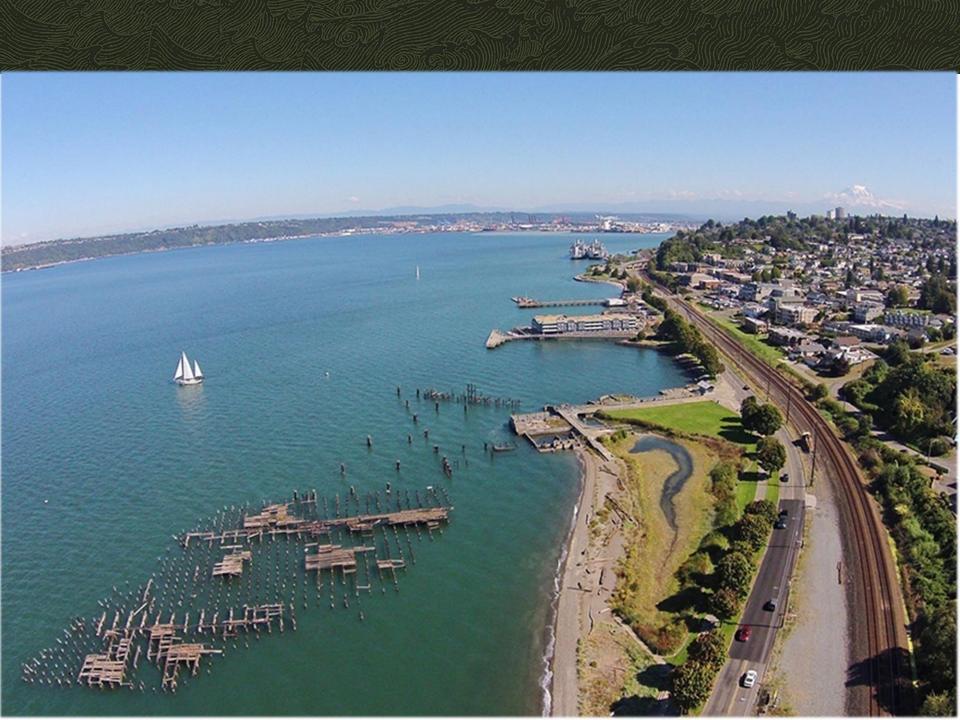

Enhance the resilience of at least three Washington coastal communities through pilot projects

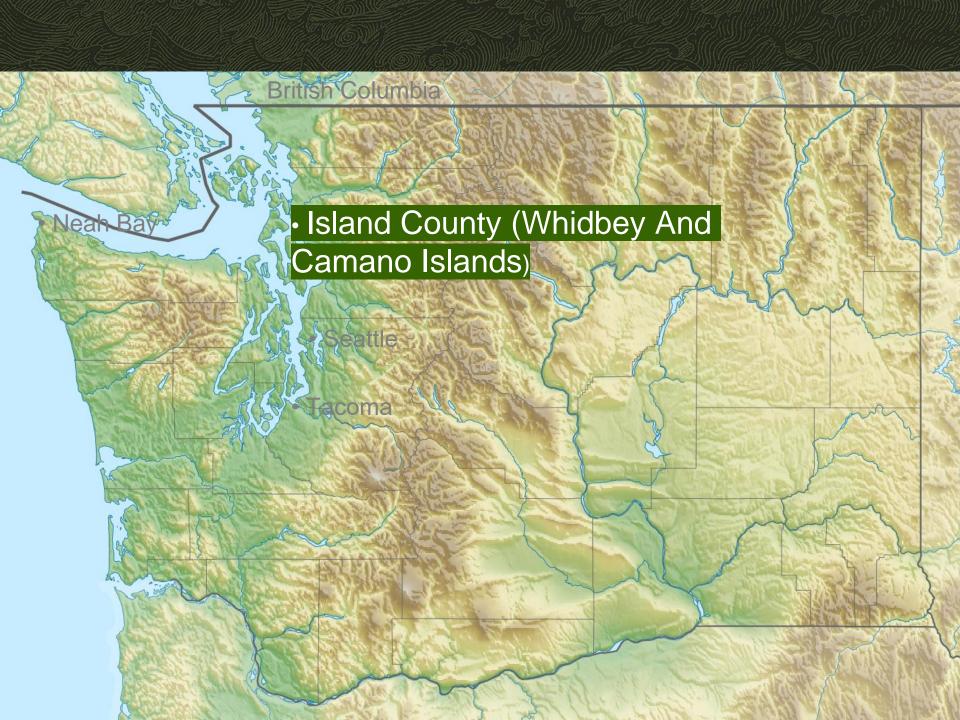
Owen Beach, Tacoma

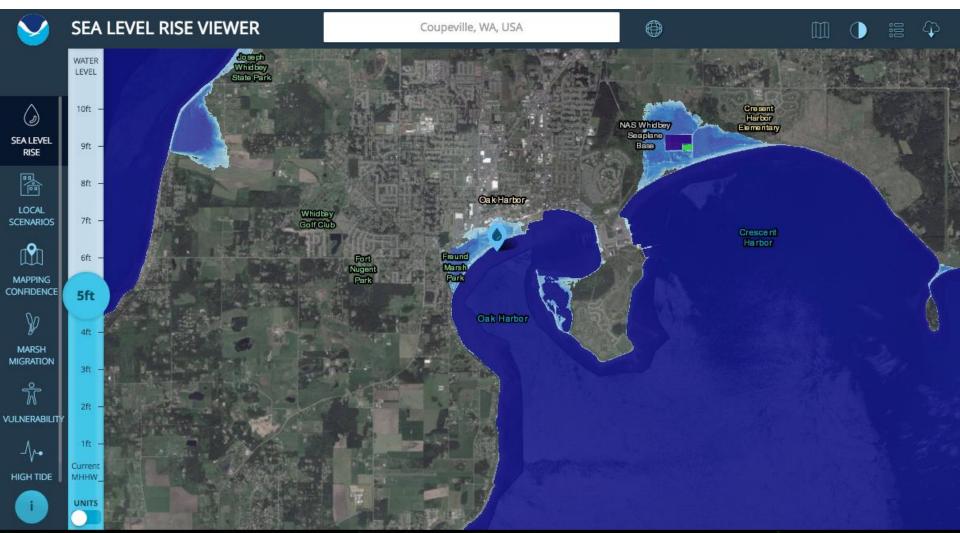
Total water level (Flooding Extent) with sea level rise (Winter)



APPLIED SLR PROJECTIONS


BASIS OF DESIGN SCENARIO FOR OWEN BEACH RCP8.5


- *This projection excludes wave run-up impact.
- **All projections are based on most recent data available and subject to change.
 - •5.84' Mean Higher High Water (existing)
 - 2.5' SLR projection @ 2090 & 20% probability
 - •3.6' FEMA Flood storm surge
 - 11.94' aggregate sea elevation at storm event



Evaluate impacts with NOAA Sea Level Rise Viewer

Strategies for Homeowners

Short –term Now - 2050

Mid- term 2050 - 2070

Long – term 2070 - 2100

Island County Sea Level Rise Strategy Study Community-Based Planning Report

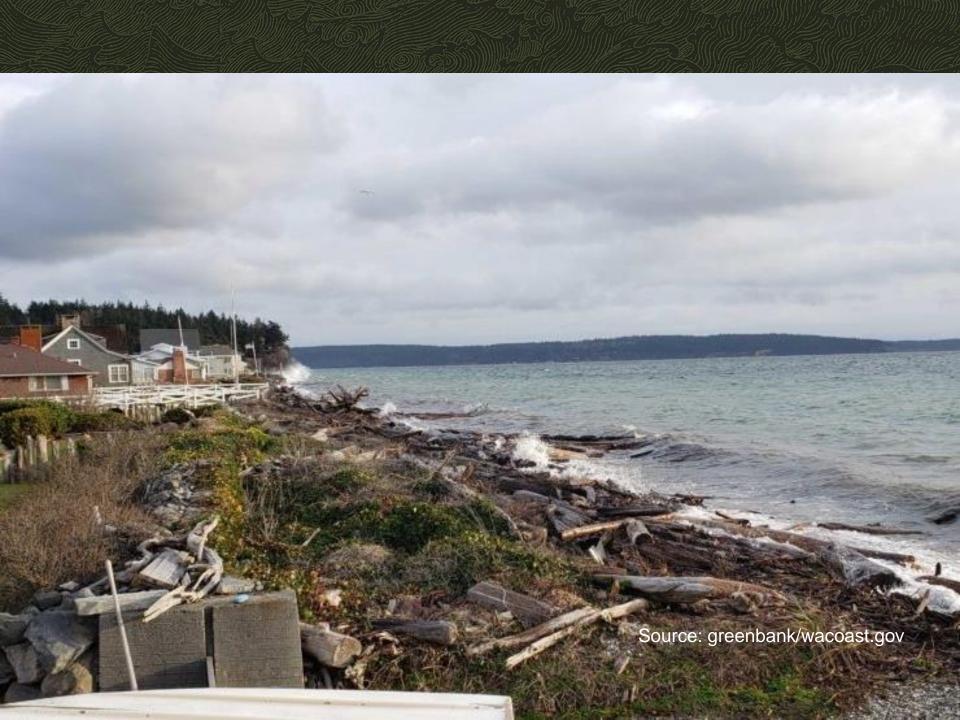
Step 1

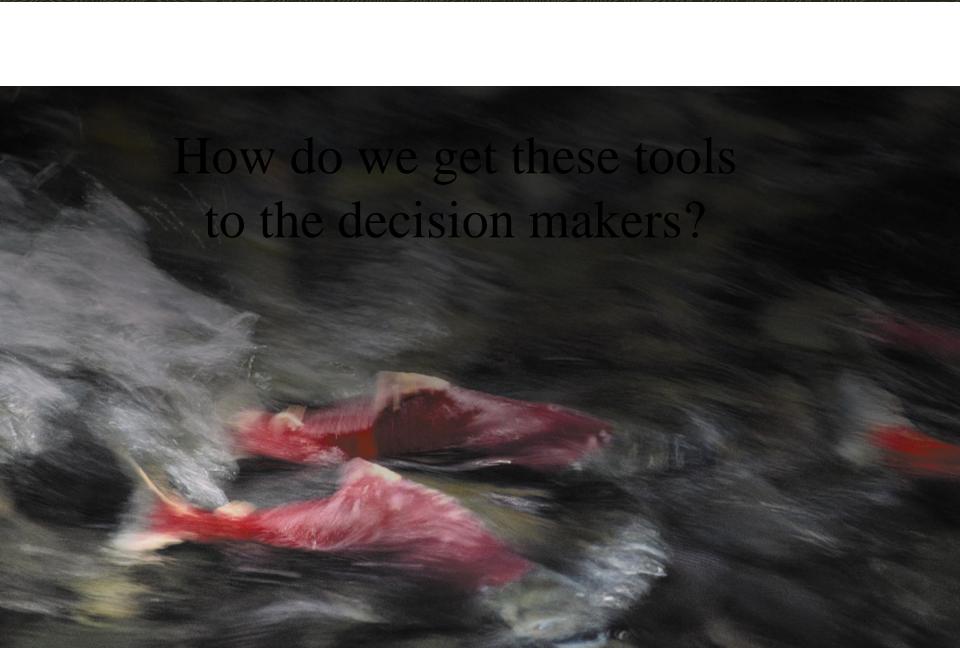
Define planning issues and establish a community planning team

Step 5

Monitor outcomes to inform future plans

Step 2


Identify community values and vulnerable assets


Step 4

Develop and implement community resilience strategies and projects

Step 3

Analyze risk and establish thresholds for action

Questions?

Nicole Faghin, Coastal Management Specialist Washington Sea Grant faghin@uw.edu

Localizing Sea Level Rise Projections for Decision-Makers

What did you think of the briefing?
Please take 2 minutes to let us know at:
www.eesi.org/survey

Materials will be available at: www.eesi.org/041320data

Tweet about the briefing: #eesitalk @eesionline